Experimental Physics : Principles and Practice for the Laboratory.

Bibliographic Details
Main Author: Smith, Walter F.
Format: eBook
Language:English
Published: Milton : Taylor & Francis Group, 2020.
Subjects:
Online Access:View fulltext via EzAccess
Table of Contents:
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Table of Contents
  • Preface
  • Acknowledgments
  • Part I Fundamentals
  • 1 Introduction
  • 2 Planning and Carrying Out Experiments
  • 2.1 Literature Research
  • 2.2 Reading Scientific Papers
  • 2.3 Experimental Design
  • 2.4 Modeling
  • 2.5 Important Guidelines for Conducting Experiments
  • Preparation
  • Safety
  • Pilot Testing
  • Taking Data
  • 2.6 Lab Notebooks
  • 2.7 Troubleshooting
  • 3 Presenting Your Results
  • 3.1 The Process of Scientific Communication
  • 3.2 Data Visualization
  • Graphs
  • Images
  • Diagrams
  • 3.3 Writing Scientific Papers
  • 3.4 Preparing, Delivering, and Listening to Talks
  • Listening to Talks
  • 3.5 Preparing and Presenting Posters
  • 4 Uncertainty and Statistics
  • 4.1 Random vs. Systematic Errors
  • Accuracy vs. Precision
  • Where Do These Systematic Errors Come From?
  • 4.2 Methods of Determining Uncertainty
  • Instrumental Uncertainty
  • Multiple Trials
  • 4.3 Standard Error of the Mean and Probability Distributions
  • 4.3.1 Sample vs Population and the Gaussian Distribution
  • 4.3.2 Standard Deviation vs. Standard Error of the Mean
  • 4.3.3 Other Distributions
  • 4.3.4 Median and Mode
  • 4.4 Confidence Intervals
  • 4.5 Student's t-Distribution
  • 4.6 Significant Figures
  • 4.7 Quantitative Comparisons, or How Not to Be Misled by Error Bars
  • 4.8 Propagating Errors
  • Direct Substitution
  • Linear Approximation
  • Multiple Error Contributions
  • Addition in Quadrature
  • 4.9 More of the Instrumental Uncertainty Method, Including "Absolute Tolerance"
  • 4.10 Parameter Fitting
  • 4.11 Measurement Errors and χ2 (also known as chi square)
  • Interpreting χ2
  • Fitting Routines and How to Make Them Work for You
  • Outliers and Outlier Rejection
  • 4.12 What to Do When Something Goes Wrong
  • 4.13 Homework Problems
  • Acknowledgment
  • 5 Scientific Ethics.
  • 5.1 A Brief Overview of Scientific Ethics
  • 5.2 FFP: The Cardinal Sins
  • 5.3 Data Ethics
  • 5.4 Publishing and Credit
  • 5.5 Academia
  • 5.6 Equality and Equity
  • 5.7 Financial Considerations
  • 5.8 Safety
  • 5.9 Communication
  • 5.10 Regulations
  • 5.11 Choice of Research
  • Part II Tools of an Experimentalist
  • 6 Analog Electronics
  • 6.1 Introduction
  • 6.2 Input and Output Impedance: Part 1
  • Motivation, Voltage Dividers
  • Introduction
  • What Is an Ideal Battery?
  • Ground vs. Common, Behavior of Real Batteries with "No Load" vs. with Rload
  • Definition of Output Impedance
  • How to Measure Output Impedance
  • Generalization of Output Impedance, Perfect Buffers
  • Functional Blocks, the Scientific Debugging Process
  • Input Impedance
  • An Example of Complex Input Impedance
  • Combining the Ideas of Input and Output Impedance: Loading Effects
  • How to Measure Input Impedance
  • 6.3 Input and Output Impedance: Part 2
  • How to Calculate Input Impedance by Looking at a Schematic Diagram
  • How to Calculate Output Impedance by Looking at a Schematic Diagram
  • Back to Our Motivational Example
  • Other Examples, Application to Debugging
  • Input and Output Impedance of Filters
  • 6.4 Amplifier Fundamentals
  • 6.5 Capacitively Coupled Interference
  • 6.6 Common vs. Ground, Inductively Coupled Interference, and Ground Loops
  • Common vs. Ground
  • Single-Ended vs. Differential Amplifiers
  • Inductively Coupled Interference
  • Background
  • Interference in a Circuit
  • How to Minimize It
  • Ground Loops
  • 6.7 Noise
  • Noise Amplitude
  • Combining Noise Sources
  • Fourier Spectral Characteristics of Noise
  • 6.8 Negative Feedback and Op Amps
  • 6.9 Bode Plots and Oscillations from the Feedback Loop
  • 6.10 Simulation of Analog Circuits
  • Lab 6A Input and Output Impedance Revisited, Surprising Effects of Capacitance
  • Introduction.
  • Lab 6B Intermediate-level Scope Mastery
  • Introduction
  • Lab 6C Introduction to Amplifiers, Capacitively Coupled Interference, and Feedback Oscillations
  • Introduction
  • Lab 6D Inductively Coupled Interference and Ground Loops
  • Lab 6E Amplifier Noise and Introduction to LabVIEW
  • Part 1: DC Offsets and Amplifier Noise
  • Part 2: Introduction to LabVIEW
  • Lab 6F Lock-In Amplifiers
  • Introduction and Background
  • Experimental Procedure
  • Lab 6G Introduction to Op Amps
  • Lab 6H More on Op Amps
  • 6.11 Homework Problems
  • 7 Fundamentals of Interfacing Experiments with Computers
  • 7.1 Introduction: The Difference between Digital and Analog
  • Approaches to Interfacing
  • 7.2 Sampling Rate, Resolution, and the Importance of Analog Amplification
  • 7.3 The Nyquist Frequency, Aliasing, Windowing, and Experimental Fourier Analysis
  • Aliasing
  • Windowing
  • 7.4 Preview of the Arduino
  • 8 Digital Electronics
  • 8.1 Introduction
  • 8.2 Truth Tables
  • 8.3 Gates
  • 8.3.1 Basic Gates
  • 8.3.2 Multi-Gate Circuits
  • 8.3.3 CMOS Logic Gates
  • 8.4 Boolean Algebra
  • 8.4.1 Variables
  • 8.4.2 Operators
  • 8.4.3 Expressions
  • 8.4.4 Algebraic Relations
  • 8.5 Logic Design
  • 8.5.1 Sum-of-Products
  • 8.5.2 Product-of-Sums
  • 8.6 Common Logic Functions
  • 8.6.1 Coders/Decoders
  • 8.7 Arithmetic Logic
  • 8.7.1 Half-Adder
  • 8.7.2 The Full-Adder
  • 8.8 Sequential Logic
  • 8.8.1 The Flip-Flop
  • 8.8.2 Switch De-Bouncing with the Flip-Flop
  • 8.8.3 Simple Counters
  • 8.9 Synchronous Logic
  • 8.9.1 Describing Synchronous Systems
  • 8.9.2 Designing Synchronous Circuits with D-Type Flip-Flops
  • 8.9.3 Excluded States in Synchronous Logic
  • 8.9.4 External Inputs
  • 8.9.5 Resetting Synchronous Circuits
  • 8.10 Introduction to Verilog
  • Lab 8A Digital Logic
  • 8A.1 Combinatorial Logic
  • 8A.2 Sequential Logic
  • 8A.3 Synchronous Sequential Machines.
  • Lab 8B Controlling the World with Arduino
  • Lab 8C Interfacing an Experiment with Arduino
  • Lab 8D Arduino Motor Control
  • Lab 8E Field Programmable Gate Arrays (FPGAs)
  • 9 Data Acquisition and Experiment Control with Python
  • Learning Goals
  • 9.1 Overview
  • 9.1.1 Automation Technologies
  • 9.1.2 What This Chapter Is Really About
  • 9.2 Safety Precautions
  • 9.2.1 Automation Risks
  • 9.3 Python: An Introduction and Primer
  • 9.3.1 Programming Best Practices
  • 9.3.2 Self-Guided Python Tutorial
  • 9.3.3 Working with Python Files
  • 9.4 Warm-up Experiment
  • 9.4.1 Materials
  • 9.4.2 Complete Warm-Up Experiment
  • 9.5 Experiment
  • 9.5.1 Materials
  • 9.5.2 Hardware Limitations
  • 9.5.3 Experimental Setup
  • 9.5.4 Understanding LabJack Streaming
  • 9.5.5 Plan the Software Workflow
  • 9.5.6 Create Automation Script
  • 9.5.7 Performing Useful Science with Your Experimental System
  • 9.6 Advanced Lab: Leverage the PLACE Framework
  • 9.7 Homework Problems
  • 10 Basic Optics Techniques and Hardware
  • 10.1 Laser Safety
  • 10.2 Lasers
  • 10.3 Optical Hardware
  • Optical Tables and Breadboards
  • Posts, Postholders, and Pedestals
  • 10.4 Optical Elements
  • Lenses
  • Mirrors
  • Neutral Density Filters
  • Beamsplitters
  • Polarizers and Waveplates
  • 10.5 Beam Expanders
  • 10.6 Alignment
  • 10.7 Protection, Storage, and Cleaning
  • 10.8 Organization
  • Labeling
  • Storage
  • Tools Organization
  • Lab 10A The Quantum Eraser, Simple Version
  • 10A.1 Introduction
  • Classical Polarization and Interference
  • Quantum Polarization and Interference
  • 10A.2 Precision Optical Alignments
  • Walking the Beam
  • Aligning a Laser with the Grid of Holes
  • 10A.3 Mach-Zender Interferometer and the Quantum Eraser
  • Insert Polarizing Beam Splitter Cube and Align the Beam with the Table
  • Insert Mirrors 3 and 4, and Align the Beams.
  • Insert NPBS cube and Align the Beams with the Table
  • Adding the Final Polarizer
  • Understanding Interference, and the "Quantum Eraser"
  • 11 Laser Beams, Polarization, and Interference
  • 11.1 Introduction
  • Learning Goals
  • Additional Reading
  • Pre-Lab Questions
  • 11.2 Polarization
  • Lab 11A Polarization and Jones Vectors
  • 11A.1 Optical Activity
  • 11A.2 Quarter Wave Plates
  • 11A.3 Circular Polarizer
  • 11A.4 Elliptical Polarization
  • 11A.5 Brewster's Angle and s- and p-Polarizations
  • 11.3 Gaussian Beams
  • Lab 11B Laser Beams
  • 11B.1 Focusing a Beam and f-Number
  • 11B.2 The Airy Pattern and How to Clean Up a Beam
  • 11B.3 The Mathematical Structure of Gaussian Beams
  • 12 Vacuum
  • 12.1 Introduction
  • 13 Particle Detection
  • 13.1 Introduction to Radioactivity
  • 13.1.1 Introduction
  • 13.1.2 Activity
  • Concept Tests
  • 13.1.3 Safety
  • 13.2 Detecting Radiation
  • 13.2.1 GM Tubes1,
  • Concept Test
  • 13.2.2 Scintillator-Based Detectors1,9
  • Concept Test
  • 13.3 Interactions with Matter
  • Concept Test
  • 13.4 Counting Statistics
  • Concept Test
  • 13.5 Homework Problems
  • Lab 13A Experiment on Counting Statistics
  • 13A.1 Objectives
  • 13A.2 Safety
  • 13A.3 Experiments
  • 13A.3.1 Background Measurement
  • 13A.3.2 Poisson and Gaussian Distributions
  • 13A.3.3 Measurement of GM Tube Dead Time
  • 13A.3.4 Measuring Count Rate vs. Distance
  • 13A.3.5 Measuring Count Rate vs. Absorber Thickness
  • Part III Fields of Physics
  • 14 Development and Supervision of Independent Projects
  • 14.1 Introduction
  • 14.2 Project Proposal
  • 14.2.1 Research Goals
  • 14.2.2 Literature Review
  • 14.2.3 Work Plan
  • 14.2.4 Equipment and Infrastructure
  • 14.2.5 Summary
  • 14.3 Additional Elements to Consider for an Independent Project
  • 14.3.1 Navigating Group Dynamics
  • 14.3.2 Weekly Planning
  • 14.3.3 Troubleshooting
  • 14.3.4 Summary.
  • 15 Condensed Matter Physics.