Experimental Physics : Principles and Practice for the Laboratory.

Bibliographic Details
Main Author: Smith, Walter F.
Format: eBook
Language:English
Published: Milton : Taylor & Francis Group, 2020.
Subjects:
Online Access:View fulltext via EzAccess
LEADER 11574nam a22004693i 4500
001 EBC6141305
003 MiAaPQ
005 20210318061024.0
006 m o d |
007 cr cnu||||||||
008 210318s2020 xx o ||||0 eng d
020 |a 9781498778688  |q (electronic bk.) 
020 |z 9781498778473 
035 |a (MiAaPQ)EBC6141305 
035 |a (Au-PeEL)EBL6141305 
035 |a (OCoLC)1147296458 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a QC33  |b .E974 2020 
082 0 |a 530.07799999999997 
100 1 |a Smith, Walter F. 
245 1 0 |a Experimental Physics :  |b Principles and Practice for the Laboratory. 
264 1 |a Milton :  |b Taylor & Francis Group,  |c 2020. 
264 4 |c ©2020. 
300 |a 1 online resource (451 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Part I Fundamentals -- 1 Introduction -- 2 Planning and Carrying Out Experiments -- 2.1 Literature Research -- 2.2 Reading Scientific Papers -- 2.3 Experimental Design -- 2.4 Modeling -- 2.5 Important Guidelines for Conducting Experiments -- Preparation -- Safety -- Pilot Testing -- Taking Data -- 2.6 Lab Notebooks -- 2.7 Troubleshooting -- 3 Presenting Your Results -- 3.1 The Process of Scientific Communication -- 3.2 Data Visualization -- Graphs -- Images -- Diagrams -- 3.3 Writing Scientific Papers -- 3.4 Preparing, Delivering, and Listening to Talks -- Listening to Talks -- 3.5 Preparing and Presenting Posters -- 4 Uncertainty and Statistics -- 4.1 Random vs. Systematic Errors -- Accuracy vs. Precision -- Where Do These Systematic Errors Come From? -- 4.2 Methods of Determining Uncertainty -- Instrumental Uncertainty -- Multiple Trials -- 4.3 Standard Error of the Mean and Probability Distributions -- 4.3.1 Sample vs Population and the Gaussian Distribution -- 4.3.2 Standard Deviation vs. Standard Error of the Mean -- 4.3.3 Other Distributions -- 4.3.4 Median and Mode -- 4.4 Confidence Intervals -- 4.5 Student's t-Distribution -- 4.6 Significant Figures -- 4.7 Quantitative Comparisons, or How Not to Be Misled by Error Bars -- 4.8 Propagating Errors -- Direct Substitution -- Linear Approximation -- Multiple Error Contributions -- Addition in Quadrature -- 4.9 More of the Instrumental Uncertainty Method, Including "Absolute Tolerance" -- 4.10 Parameter Fitting -- 4.11 Measurement Errors and χ2 (also known as chi square) -- Interpreting χ2 -- Fitting Routines and How to Make Them Work for You -- Outliers and Outlier Rejection -- 4.12 What to Do When Something Goes Wrong -- 4.13 Homework Problems -- Acknowledgment -- 5 Scientific Ethics. 
505 8 |a 5.1 A Brief Overview of Scientific Ethics -- 5.2 FFP: The Cardinal Sins -- 5.3 Data Ethics -- 5.4 Publishing and Credit -- 5.5 Academia -- 5.6 Equality and Equity -- 5.7 Financial Considerations -- 5.8 Safety -- 5.9 Communication -- 5.10 Regulations -- 5.11 Choice of Research -- Part II Tools of an Experimentalist -- 6 Analog Electronics -- 6.1 Introduction -- 6.2 Input and Output Impedance: Part 1 -- Motivation, Voltage Dividers -- Introduction -- What Is an Ideal Battery? -- Ground vs. Common, Behavior of Real Batteries with "No Load" vs. with Rload -- Definition of Output Impedance -- How to Measure Output Impedance -- Generalization of Output Impedance, Perfect Buffers -- Functional Blocks, the Scientific Debugging Process -- Input Impedance -- An Example of Complex Input Impedance -- Combining the Ideas of Input and Output Impedance: Loading Effects -- How to Measure Input Impedance -- 6.3 Input and Output Impedance: Part 2 -- How to Calculate Input Impedance by Looking at a Schematic Diagram -- How to Calculate Output Impedance by Looking at a Schematic Diagram -- Back to Our Motivational Example -- Other Examples, Application to Debugging -- Input and Output Impedance of Filters -- 6.4 Amplifier Fundamentals -- 6.5 Capacitively Coupled Interference -- 6.6 Common vs. Ground, Inductively Coupled Interference, and Ground Loops -- Common vs. Ground -- Single-Ended vs. Differential Amplifiers -- Inductively Coupled Interference -- Background -- Interference in a Circuit -- How to Minimize It -- Ground Loops -- 6.7 Noise -- Noise Amplitude -- Combining Noise Sources -- Fourier Spectral Characteristics of Noise -- 6.8 Negative Feedback and Op Amps -- 6.9 Bode Plots and Oscillations from the Feedback Loop -- 6.10 Simulation of Analog Circuits -- Lab 6A Input and Output Impedance Revisited, Surprising Effects of Capacitance -- Introduction. 
505 8 |a Lab 6B Intermediate-level Scope Mastery -- Introduction -- Lab 6C Introduction to Amplifiers, Capacitively Coupled Interference, and Feedback Oscillations -- Introduction -- Lab 6D Inductively Coupled Interference and Ground Loops -- Lab 6E Amplifier Noise and Introduction to LabVIEW -- Part 1: DC Offsets and Amplifier Noise -- Part 2: Introduction to LabVIEW -- Lab 6F Lock-In Amplifiers -- Introduction and Background -- Experimental Procedure -- Lab 6G Introduction to Op Amps -- Lab 6H More on Op Amps -- 6.11 Homework Problems -- 7 Fundamentals of Interfacing Experiments with Computers -- 7.1 Introduction: The Difference between Digital and Analog -- Approaches to Interfacing -- 7.2 Sampling Rate, Resolution, and the Importance of Analog Amplification -- 7.3 The Nyquist Frequency, Aliasing, Windowing, and Experimental Fourier Analysis -- Aliasing -- Windowing -- 7.4 Preview of the Arduino -- 8 Digital Electronics -- 8.1 Introduction -- 8.2 Truth Tables -- 8.3 Gates -- 8.3.1 Basic Gates -- 8.3.2 Multi-Gate Circuits -- 8.3.3 CMOS Logic Gates -- 8.4 Boolean Algebra -- 8.4.1 Variables -- 8.4.2 Operators -- 8.4.3 Expressions -- 8.4.4 Algebraic Relations -- 8.5 Logic Design -- 8.5.1 Sum-of-Products -- 8.5.2 Product-of-Sums -- 8.6 Common Logic Functions -- 8.6.1 Coders/Decoders -- 8.7 Arithmetic Logic -- 8.7.1 Half-Adder -- 8.7.2 The Full-Adder -- 8.8 Sequential Logic -- 8.8.1 The Flip-Flop -- 8.8.2 Switch De-Bouncing with the Flip-Flop -- 8.8.3 Simple Counters -- 8.9 Synchronous Logic -- 8.9.1 Describing Synchronous Systems -- 8.9.2 Designing Synchronous Circuits with D-Type Flip-Flops -- 8.9.3 Excluded States in Synchronous Logic -- 8.9.4 External Inputs -- 8.9.5 Resetting Synchronous Circuits -- 8.10 Introduction to Verilog -- Lab 8A Digital Logic -- 8A.1 Combinatorial Logic -- 8A.2 Sequential Logic -- 8A.3 Synchronous Sequential Machines. 
505 8 |a Lab 8B Controlling the World with Arduino -- Lab 8C Interfacing an Experiment with Arduino -- Lab 8D Arduino Motor Control -- Lab 8E Field Programmable Gate Arrays (FPGAs) -- 9 Data Acquisition and Experiment Control with Python -- Learning Goals -- 9.1 Overview -- 9.1.1 Automation Technologies -- 9.1.2 What This Chapter Is Really About -- 9.2 Safety Precautions -- 9.2.1 Automation Risks -- 9.3 Python: An Introduction and Primer -- 9.3.1 Programming Best Practices -- 9.3.2 Self-Guided Python Tutorial -- 9.3.3 Working with Python Files -- 9.4 Warm-up Experiment -- 9.4.1 Materials -- 9.4.2 Complete Warm-Up Experiment -- 9.5 Experiment -- 9.5.1 Materials -- 9.5.2 Hardware Limitations -- 9.5.3 Experimental Setup -- 9.5.4 Understanding LabJack Streaming -- 9.5.5 Plan the Software Workflow -- 9.5.6 Create Automation Script -- 9.5.7 Performing Useful Science with Your Experimental System -- 9.6 Advanced Lab: Leverage the PLACE Framework -- 9.7 Homework Problems -- 10 Basic Optics Techniques and Hardware -- 10.1 Laser Safety -- 10.2 Lasers -- 10.3 Optical Hardware -- Optical Tables and Breadboards -- Posts, Postholders, and Pedestals -- 10.4 Optical Elements -- Lenses -- Mirrors -- Neutral Density Filters -- Beamsplitters -- Polarizers and Waveplates -- 10.5 Beam Expanders -- 10.6 Alignment -- 10.7 Protection, Storage, and Cleaning -- 10.8 Organization -- Labeling -- Storage -- Tools Organization -- Lab 10A The Quantum Eraser, Simple Version -- 10A.1 Introduction -- Classical Polarization and Interference -- Quantum Polarization and Interference -- 10A.2 Precision Optical Alignments -- Walking the Beam -- Aligning a Laser with the Grid of Holes -- 10A.3 Mach-Zender Interferometer and the Quantum Eraser -- Insert Polarizing Beam Splitter Cube and Align the Beam with the Table -- Insert Mirrors 3 and 4, and Align the Beams. 
505 8 |a Insert NPBS cube and Align the Beams with the Table -- Adding the Final Polarizer -- Understanding Interference, and the "Quantum Eraser" -- 11 Laser Beams, Polarization, and Interference -- 11.1 Introduction -- Learning Goals -- Additional Reading -- Pre-Lab Questions -- 11.2 Polarization -- Lab 11A Polarization and Jones Vectors -- 11A.1 Optical Activity -- 11A.2 Quarter Wave Plates -- 11A.3 Circular Polarizer -- 11A.4 Elliptical Polarization -- 11A.5 Brewster's Angle and s- and p-Polarizations -- 11.3 Gaussian Beams -- Lab 11B Laser Beams -- 11B.1 Focusing a Beam and f-Number -- 11B.2 The Airy Pattern and How to Clean Up a Beam -- 11B.3 The Mathematical Structure of Gaussian Beams -- 12 Vacuum -- 12.1 Introduction -- 13 Particle Detection -- 13.1 Introduction to Radioactivity -- 13.1.1 Introduction -- 13.1.2 Activity -- Concept Tests -- 13.1.3 Safety -- 13.2 Detecting Radiation -- 13.2.1 GM Tubes1, -- Concept Test -- 13.2.2 Scintillator-Based Detectors1,9 -- Concept Test -- 13.3 Interactions with Matter -- Concept Test -- 13.4 Counting Statistics -- Concept Test -- 13.5 Homework Problems -- Lab 13A Experiment on Counting Statistics -- 13A.1 Objectives -- 13A.2 Safety -- 13A.3 Experiments -- 13A.3.1 Background Measurement -- 13A.3.2 Poisson and Gaussian Distributions -- 13A.3.3 Measurement of GM Tube Dead Time -- 13A.3.4 Measuring Count Rate vs. Distance -- 13A.3.5 Measuring Count Rate vs. Absorber Thickness -- Part III Fields of Physics -- 14 Development and Supervision of Independent Projects -- 14.1 Introduction -- 14.2 Project Proposal -- 14.2.1 Research Goals -- 14.2.2 Literature Review -- 14.2.3 Work Plan -- 14.2.4 Equipment and Infrastructure -- 14.2.5 Summary -- 14.3 Additional Elements to Consider for an Independent Project -- 14.3.1 Navigating Group Dynamics -- 14.3.2 Weekly Planning -- 14.3.3 Troubleshooting -- 14.3.4 Summary. 
505 8 |a 15 Condensed Matter Physics. 
526 0 |a AS120 - Diploma in Science  |z Syllabus Programme 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2021. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
650 0 |a Physics-Experiments-Textbooks. 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Smith, Walter F.  |t Experimental Physics : Principles and Practice for the Laboratory  |d Milton : Taylor & Francis Group,c2020  |z 9781498778473 
797 2 |a ProQuest (Firm) 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=https://ebookcentral.proquest.com/lib/uitm-ebooks/detail.action?docID=6141305  |z View fulltext via EzAccess 
966 0 |a 2021  |b ProQuest Ebook Central  |c UiTM Library  |d Mohd Fadhli Samsudin  |e Faculty of Applied Sciences  |f ProQuest