Quantitative Analysis for Management, Global Edition.

For courses in management science and decision modeling.Foundational understanding of management science through real-world problems and solutions Quantitative Analysis for Management helps students to develop a real-world understanding of business analytics, quantitative methods, and management sci...

Full description

Bibliographic Details
Main Author: Render, Barry.
Other Authors: Stair, Ralph M., Jr., Hanna, Michael E., Hale, Trevor S.
Format: eBook
Language:English
Published: Harlow, United Kingdom : Pearson Education, Limited, 2018.
Edition:13th ed.
Subjects:
Online Access:View fulltext via EzAccess
LEADER 11823nam a22005653i 4500
001 EBC5186292
003 MiAaPQ
005 20210318061024.0
006 m o d |
007 cr cnu||||||||
008 210318s2017 xx o ||||0 eng d
020 |a 9781292217680  |q (electronic bk.) 
020 |z 9781292217659 
035 |a (MiAaPQ)EBC5186292 
035 |a (Au-PeEL)EBL5186292 
035 |a (CaPaEBR)ebr11482363 
035 |a (OCoLC)1017002041 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a T56  |b .Q368 2018 
082 0 |a 658.4032 
100 1 |a Render, Barry. 
245 1 0 |a Quantitative Analysis for Management, Global Edition. 
250 |a 13th ed. 
264 1 |a Harlow, United Kingdom :  |b Pearson Education, Limited,  |c 2018. 
264 4 |c ©2018. 
300 |a 1 online resource (610 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover -- Title Page -- Copyright Page -- About the Authors -- Brief Contents -- Contents -- Preface -- Acknowledgments -- Chapter 1: Introduction to Quantitative Analysis -- 1.1. What Is Quantitative Analysis? -- 1.2. Business Analytics -- 1.3. The Quantitative Analysis Approach -- Defining the Problem -- Developing a Model -- Acquiring Input Data -- Developing a Solution -- Testing the Solution -- Analyzing the Results and Sensitivity Analysis -- Implementing the Results -- The Quantitative Analysis Approach and Modeling in the Real World -- 1.4. How to Develop a Quantitative Analysis Model -- The Advantages of Mathematical Modeling -- Mathematical Models Categorized by Risk -- 1.5. The Role of Computers and Spreadsheet Models in the Quantitative Analysis Approach -- 1.6. Possible Problems in the Quantitative Analysis Approach -- Defining the Problem -- Developing a Model -- Acquiring Input Data -- Developing a Solution -- Testing the Solution -- Analyzing the Results -- 1.7. Implementation-Not Just the Final Step -- Lack of Commitment and Resistance to Change -- Lack of Commitment by Quantitative Analysts -- Summary -- Glossary -- Key Equations -- Self-Test -- Discussion Questions and Problems -- Case Study: Food and Beverages at Southwestern University Football Games -- Bibliography -- Chapter 2: Probability Concepts and Applications -- 2.1. Fundamental Concepts -- Two Basic Rules of Probability -- Types of Probability -- Mutually Exclusive and Collectively Exhaustive Events -- Unions and Intersections of Events -- Probability Rules for Unions, Intersections, and Conditional Probabilities -- 2.2. Revising Probabilities with Bayes' Theorem -- General Form of Bayes' Theorem -- 2.3. Further Probability Revisions -- 2.4. Random Variables -- 2.5. Probability Distributions -- Probability Distribution of a Discrete Random Variable. 
505 8 |a Expected Value of a Discrete Probability Distribution -- Variance of a Discrete Probability Distribution -- Probability Distribution of a Continuous Random Variable -- 2.6. The Binomial Distribution -- Solving Problems with the Binomial Formula -- Solving Problems with Binomial Tables -- 2.7. The Normal Distribution -- Area Under the Normal Curve -- Using the Standard Normal Table -- Haynes Construction Company Example -- The Empirical Rule -- 2.8. The F Distribution -- 2.9. The Exponential Distribution -- Arnold's Muffler Example -- 2.10. The Poisson Distribution -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: WTVX -- Bibliography -- Appendix 2.1: Derivation of Bayes' Theorem -- Chapter 3: Decision Analysis -- 3.1. The Six Steps in Decision Making -- 3.2. Types of Decision-Making Environments -- 3.3. Decision Making Under Uncertainty -- Optimistic -- Pessimistic -- Criterion of Realism (Hurwicz Criterion) -- Equally Likely (Laplace) -- Minimax Regret -- 3.4. Decision Making Under Risk -- Expected Monetary Value -- Expected Value of Perfect Information -- Expected Opportunity Loss -- Sensitivity Analysis -- A Minimization Example -- 3.5. Using Software for Payoff Table Problems -- QM for Windows -- Excel QM -- 3.6. Decision Trees -- Efficiency of Sample Information -- Sensitivity Analysis -- 3.7. How Probability Values Are Estimated by Bayesian Analysis -- Calculating Revised Probabilities -- Potential Problem in Using Survey Results -- 3.8. Utility Theory -- Measuring Utility and Constructing a Utility Curve -- Utility as a Decision-Making Criterion -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Starting Right Corporation -- Case Study: Toledo Leather Company -- Case Study: Blake Electronics. 
505 8 |a Bibliography -- Chapter 4: Regression Models -- 4.1. Scatter Diagrams -- 4.2. Simple Linear Regression -- 4.3. Measuring the Fit of the Regression Model -- Coefficient of Determination -- Correlation Coefficient -- 4.4. Assumptions of the Regression Model -- Estimating the Variance -- 4.5. Testing the Model for Significance -- Triple A Construction Example -- The Analysis of Variance (ANOVA) Table -- Triple A Construction ANOVA Example -- 4.6. Using Computer Software for Regression -- Excel 2016 -- Excel QM -- QM for Windows -- 4.7. Multiple Regression Analysis -- Evaluating the Multiple Regression Model -- Jenny Wilson Realty Example -- 4.8. Binary or Dummy Variables -- 4.9. Model Building -- Stepwise Regression -- Multicollinearity -- 4.10. Nonlinear Regression -- 4.11. Cautions and Pitfalls in Regression Analysis -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: North-South Airline -- Bibliography -- Appendix 4.1: Formulas for Regression Calculations -- Chapter 5: Forecasting -- 5.1. Types of Forecasting Models -- Qualitative Models -- Causal Models -- Time-Series Models -- 5.2. Components of a Time-Series -- 5.3. Measures of Forecast Accuracy -- 5.4. Forecasting Models-Random Variations Only -- Moving Averages -- Weighted Moving Averages -- Exponential Smoothing -- Using Software for Forecasting Time Series -- 5.5. Forecasting Models-Trend and Random Variations -- Exponential Smoothing with Trend -- Trend Projections -- 5.6. Adjusting for Seasonal Variations -- Seasonal Indices -- Calculating Seasonal Indices with No Trend -- Calculating Seasonal Indices with Trend -- 5.7. Forecasting Models-Trend, Seasonal, and Random Variations -- The Decomposition Method -- Software for Decomposition -- Using Regression with Trend and Seasonal Components. 
505 8 |a 5.8. Monitoring and Controlling Forecasts -- Adaptive Smoothing -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Forecasting Attendance at SWU Football Games -- Case Study: Forecasting Monthly Sales -- Bibliography -- Chapter 6: Inventory Control Models -- 6.1. Importance of Inventory Control -- Decoupling Function -- Storing Resources -- Irregular Supply and Demand -- Quantity Discounts -- Avoiding Stockouts and Shortages -- 6.2. Inventory Decisions -- 6.3. Economic Order Quantity: Determining How Much to Order -- Inventory Costs in the EOQ Situation -- Finding the EOQ -- Sumco Pump Company Example -- Purchase Cost of Inventory Items -- Sensitivity Analysis with the EOQ Model -- 6.4. Reorder Point: Determining When to Order -- 6.5. EOQ Without the Instantaneous Receipt Assumption -- Annual Carrying Cost for Production Run Model -- Annual Setup Cost or Annual Ordering Cost -- Determining the Optimal Production Quantity -- Brown Manufacturing Example -- 6.6. Quantity Discount Models -- Brass Department Store Example -- 6.7. Use of Safety Stock -- 6.8. Single-Period Inventory Models -- Marginal Analysis with Discrete Distributions -- Café du Donut Example -- Marginal Analysis with the Normal Distribution -- Newspaper Example -- 6.9. ABC Analysis -- 6.10. Dependent Demand: The Case for Material Requirements Planning -- Material Structure Tree -- Gross and Net Material Requirements Plans -- Two or More End Products -- 6.11. Just-In-Time Inventory Control -- 6.12. Enterprise Resource Planning -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Martin-Pullin Bicycle Corporation -- Bibliography -- Appendix 6.1: Inventory Control with QM for Windows. 
505 8 |a Chapter 7: Linear Programming Models: Graphical and Computer Methods -- 7.1. Requirements of a Linear Programming Problem -- 7.2. Formulating LP Problems -- Flair Furniture Company -- 7.3. Graphical Solution to an LP Problem -- Graphical Representation of Constraints -- Isoprofit Line Solution Method -- Corner Point Solution Method -- Slack and Surplus -- 7.4. Solving Flair Furniture's LP Problem Using QM for Windows, Excel 2016, and Excel QM -- Using QM for Windows -- Using Excel's Solver Command to Solve LP Problems -- Using Excel QM -- 7.5. Solving Minimization Problems -- Holiday Meal Turkey Ranch -- 7.6. Four Special Cases in LP -- No Feasible Solution -- Unboundedness -- Redundancy -- Alternate Optimal Solutions -- 7.7. Sensitivity Analysis -- High Note Sound Company -- Changes in the Objective Function Coefficient -- QM for Windows and Changes in Objective Function Coefficients -- Excel Solver and Changes in Objective Function Coefficients -- Changes in the Technological Coefficients -- Changes in the Resources or Right-Hand-Side Values -- QM for Windows and Changes in Right-Hand- Side Values -- Excel Solver and Changes in Right-Hand-Side Values -- Summary -- Glossary -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Mexicana Wire Winding, Inc. -- Bibliography -- Chapter 8: Linear Programming Applications -- 8.1. Marketing Applications -- Media Selection -- Marketing Research -- 8.2. Manufacturing Applications -- Production Mix -- Production Scheduling -- 8.3. Employee Scheduling Applications -- Labor Planning -- 8.4. Financial Applications -- Portfolio Selection -- Truck Loading Problem -- 8.5. Ingredient Blending Applications -- Diet Problems -- Ingredient Mix and Blending Problems -- 8.6. Other Linear Programming Applications -- Summary -- Self-Test -- Problems -- Case Study: Cable &amp -- Moore. 
505 8 |a Bibliography. 
520 |a For courses in management science and decision modeling.Foundational understanding of management science through real-world problems and solutions Quantitative Analysis for Management helps students to develop a real-world understanding of business analytics, quantitative methods, and management science by emphasizing model building, tangi. 
526 0 |a AA701 - Master in Business Administration (MBA)  |z Syllabus Programme 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2021. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
650 0 |a Management science-Case studies.. 
650 0 |a Operations research-Case studies.. 
650 0 |a Management science. 
655 4 |a Electronic books. 
700 1 |a Stair, Ralph M., Jr. 
700 1 |a Hanna, Michael E. 
700 1 |a Hale, Trevor S. 
776 0 8 |i Print version:  |a Render, Barry  |t Quantitative Analysis for Management, Global Edition  |d Harlow, United Kingdom : Pearson Education, Limited,c2017  |z 9781292217659 
797 2 |a ProQuest (Firm) 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=https://ebookcentral.proquest.com/lib/uitm-ebooks/detail.action?docID=5186292  |z View fulltext via EzAccess 
966 0 |a 2021  |b ProQuest Ebook Central  |c UiTM Library  |d Atirah Ruslan  |e Arshad Ayub Graduate Business School (AAGBS)  |f ProQuest