|
|
|
|
LEADER |
11823nam a22005653i 4500 |
001 |
EBC5186292 |
003 |
MiAaPQ |
005 |
20210318061024.0 |
006 |
m o d | |
007 |
cr cnu|||||||| |
008 |
210318s2017 xx o ||||0 eng d |
020 |
|
|
|a 9781292217680
|q (electronic bk.)
|
020 |
|
|
|z 9781292217659
|
035 |
|
|
|a (MiAaPQ)EBC5186292
|
035 |
|
|
|a (Au-PeEL)EBL5186292
|
035 |
|
|
|a (CaPaEBR)ebr11482363
|
035 |
|
|
|a (OCoLC)1017002041
|
040 |
|
|
|a MiAaPQ
|b eng
|e rda
|e pn
|c MiAaPQ
|d MiAaPQ
|
050 |
|
4 |
|a T56
|b .Q368 2018
|
082 |
0 |
|
|a 658.4032
|
100 |
1 |
|
|a Render, Barry.
|
245 |
1 |
0 |
|a Quantitative Analysis for Management, Global Edition.
|
250 |
|
|
|a 13th ed.
|
264 |
|
1 |
|a Harlow, United Kingdom :
|b Pearson Education, Limited,
|c 2018.
|
264 |
|
4 |
|c ©2018.
|
300 |
|
|
|a 1 online resource (610 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Cover -- Title Page -- Copyright Page -- About the Authors -- Brief Contents -- Contents -- Preface -- Acknowledgments -- Chapter 1: Introduction to Quantitative Analysis -- 1.1. What Is Quantitative Analysis? -- 1.2. Business Analytics -- 1.3. The Quantitative Analysis Approach -- Defining the Problem -- Developing a Model -- Acquiring Input Data -- Developing a Solution -- Testing the Solution -- Analyzing the Results and Sensitivity Analysis -- Implementing the Results -- The Quantitative Analysis Approach and Modeling in the Real World -- 1.4. How to Develop a Quantitative Analysis Model -- The Advantages of Mathematical Modeling -- Mathematical Models Categorized by Risk -- 1.5. The Role of Computers and Spreadsheet Models in the Quantitative Analysis Approach -- 1.6. Possible Problems in the Quantitative Analysis Approach -- Defining the Problem -- Developing a Model -- Acquiring Input Data -- Developing a Solution -- Testing the Solution -- Analyzing the Results -- 1.7. Implementation-Not Just the Final Step -- Lack of Commitment and Resistance to Change -- Lack of Commitment by Quantitative Analysts -- Summary -- Glossary -- Key Equations -- Self-Test -- Discussion Questions and Problems -- Case Study: Food and Beverages at Southwestern University Football Games -- Bibliography -- Chapter 2: Probability Concepts and Applications -- 2.1. Fundamental Concepts -- Two Basic Rules of Probability -- Types of Probability -- Mutually Exclusive and Collectively Exhaustive Events -- Unions and Intersections of Events -- Probability Rules for Unions, Intersections, and Conditional Probabilities -- 2.2. Revising Probabilities with Bayes' Theorem -- General Form of Bayes' Theorem -- 2.3. Further Probability Revisions -- 2.4. Random Variables -- 2.5. Probability Distributions -- Probability Distribution of a Discrete Random Variable.
|
505 |
8 |
|
|a Expected Value of a Discrete Probability Distribution -- Variance of a Discrete Probability Distribution -- Probability Distribution of a Continuous Random Variable -- 2.6. The Binomial Distribution -- Solving Problems with the Binomial Formula -- Solving Problems with Binomial Tables -- 2.7. The Normal Distribution -- Area Under the Normal Curve -- Using the Standard Normal Table -- Haynes Construction Company Example -- The Empirical Rule -- 2.8. The F Distribution -- 2.9. The Exponential Distribution -- Arnold's Muffler Example -- 2.10. The Poisson Distribution -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: WTVX -- Bibliography -- Appendix 2.1: Derivation of Bayes' Theorem -- Chapter 3: Decision Analysis -- 3.1. The Six Steps in Decision Making -- 3.2. Types of Decision-Making Environments -- 3.3. Decision Making Under Uncertainty -- Optimistic -- Pessimistic -- Criterion of Realism (Hurwicz Criterion) -- Equally Likely (Laplace) -- Minimax Regret -- 3.4. Decision Making Under Risk -- Expected Monetary Value -- Expected Value of Perfect Information -- Expected Opportunity Loss -- Sensitivity Analysis -- A Minimization Example -- 3.5. Using Software for Payoff Table Problems -- QM for Windows -- Excel QM -- 3.6. Decision Trees -- Efficiency of Sample Information -- Sensitivity Analysis -- 3.7. How Probability Values Are Estimated by Bayesian Analysis -- Calculating Revised Probabilities -- Potential Problem in Using Survey Results -- 3.8. Utility Theory -- Measuring Utility and Constructing a Utility Curve -- Utility as a Decision-Making Criterion -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Starting Right Corporation -- Case Study: Toledo Leather Company -- Case Study: Blake Electronics.
|
505 |
8 |
|
|a Bibliography -- Chapter 4: Regression Models -- 4.1. Scatter Diagrams -- 4.2. Simple Linear Regression -- 4.3. Measuring the Fit of the Regression Model -- Coefficient of Determination -- Correlation Coefficient -- 4.4. Assumptions of the Regression Model -- Estimating the Variance -- 4.5. Testing the Model for Significance -- Triple A Construction Example -- The Analysis of Variance (ANOVA) Table -- Triple A Construction ANOVA Example -- 4.6. Using Computer Software for Regression -- Excel 2016 -- Excel QM -- QM for Windows -- 4.7. Multiple Regression Analysis -- Evaluating the Multiple Regression Model -- Jenny Wilson Realty Example -- 4.8. Binary or Dummy Variables -- 4.9. Model Building -- Stepwise Regression -- Multicollinearity -- 4.10. Nonlinear Regression -- 4.11. Cautions and Pitfalls in Regression Analysis -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: North-South Airline -- Bibliography -- Appendix 4.1: Formulas for Regression Calculations -- Chapter 5: Forecasting -- 5.1. Types of Forecasting Models -- Qualitative Models -- Causal Models -- Time-Series Models -- 5.2. Components of a Time-Series -- 5.3. Measures of Forecast Accuracy -- 5.4. Forecasting Models-Random Variations Only -- Moving Averages -- Weighted Moving Averages -- Exponential Smoothing -- Using Software for Forecasting Time Series -- 5.5. Forecasting Models-Trend and Random Variations -- Exponential Smoothing with Trend -- Trend Projections -- 5.6. Adjusting for Seasonal Variations -- Seasonal Indices -- Calculating Seasonal Indices with No Trend -- Calculating Seasonal Indices with Trend -- 5.7. Forecasting Models-Trend, Seasonal, and Random Variations -- The Decomposition Method -- Software for Decomposition -- Using Regression with Trend and Seasonal Components.
|
505 |
8 |
|
|a 5.8. Monitoring and Controlling Forecasts -- Adaptive Smoothing -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Forecasting Attendance at SWU Football Games -- Case Study: Forecasting Monthly Sales -- Bibliography -- Chapter 6: Inventory Control Models -- 6.1. Importance of Inventory Control -- Decoupling Function -- Storing Resources -- Irregular Supply and Demand -- Quantity Discounts -- Avoiding Stockouts and Shortages -- 6.2. Inventory Decisions -- 6.3. Economic Order Quantity: Determining How Much to Order -- Inventory Costs in the EOQ Situation -- Finding the EOQ -- Sumco Pump Company Example -- Purchase Cost of Inventory Items -- Sensitivity Analysis with the EOQ Model -- 6.4. Reorder Point: Determining When to Order -- 6.5. EOQ Without the Instantaneous Receipt Assumption -- Annual Carrying Cost for Production Run Model -- Annual Setup Cost or Annual Ordering Cost -- Determining the Optimal Production Quantity -- Brown Manufacturing Example -- 6.6. Quantity Discount Models -- Brass Department Store Example -- 6.7. Use of Safety Stock -- 6.8. Single-Period Inventory Models -- Marginal Analysis with Discrete Distributions -- Café du Donut Example -- Marginal Analysis with the Normal Distribution -- Newspaper Example -- 6.9. ABC Analysis -- 6.10. Dependent Demand: The Case for Material Requirements Planning -- Material Structure Tree -- Gross and Net Material Requirements Plans -- Two or More End Products -- 6.11. Just-In-Time Inventory Control -- 6.12. Enterprise Resource Planning -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Martin-Pullin Bicycle Corporation -- Bibliography -- Appendix 6.1: Inventory Control with QM for Windows.
|
505 |
8 |
|
|a Chapter 7: Linear Programming Models: Graphical and Computer Methods -- 7.1. Requirements of a Linear Programming Problem -- 7.2. Formulating LP Problems -- Flair Furniture Company -- 7.3. Graphical Solution to an LP Problem -- Graphical Representation of Constraints -- Isoprofit Line Solution Method -- Corner Point Solution Method -- Slack and Surplus -- 7.4. Solving Flair Furniture's LP Problem Using QM for Windows, Excel 2016, and Excel QM -- Using QM for Windows -- Using Excel's Solver Command to Solve LP Problems -- Using Excel QM -- 7.5. Solving Minimization Problems -- Holiday Meal Turkey Ranch -- 7.6. Four Special Cases in LP -- No Feasible Solution -- Unboundedness -- Redundancy -- Alternate Optimal Solutions -- 7.7. Sensitivity Analysis -- High Note Sound Company -- Changes in the Objective Function Coefficient -- QM for Windows and Changes in Objective Function Coefficients -- Excel Solver and Changes in Objective Function Coefficients -- Changes in the Technological Coefficients -- Changes in the Resources or Right-Hand-Side Values -- QM for Windows and Changes in Right-Hand- Side Values -- Excel Solver and Changes in Right-Hand-Side Values -- Summary -- Glossary -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Mexicana Wire Winding, Inc. -- Bibliography -- Chapter 8: Linear Programming Applications -- 8.1. Marketing Applications -- Media Selection -- Marketing Research -- 8.2. Manufacturing Applications -- Production Mix -- Production Scheduling -- 8.3. Employee Scheduling Applications -- Labor Planning -- 8.4. Financial Applications -- Portfolio Selection -- Truck Loading Problem -- 8.5. Ingredient Blending Applications -- Diet Problems -- Ingredient Mix and Blending Problems -- 8.6. Other Linear Programming Applications -- Summary -- Self-Test -- Problems -- Case Study: Cable & -- Moore.
|
505 |
8 |
|
|a Bibliography.
|
520 |
|
|
|a For courses in management science and decision modeling.Foundational understanding of management science through real-world problems and solutions Quantitative Analysis for Management helps students to develop a real-world understanding of business analytics, quantitative methods, and management science by emphasizing model building, tangi.
|
526 |
0 |
|
|a AA701 - Master in Business Administration (MBA)
|z Syllabus Programme
|
588 |
|
|
|a Description based on publisher supplied metadata and other sources.
|
590 |
|
|
|a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2021. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
|
650 |
|
0 |
|a Management science-Case studies..
|
650 |
|
0 |
|a Operations research-Case studies..
|
650 |
|
0 |
|a Management science.
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Stair, Ralph M., Jr.
|
700 |
1 |
|
|a Hanna, Michael E.
|
700 |
1 |
|
|a Hale, Trevor S.
|
776 |
0 |
8 |
|i Print version:
|a Render, Barry
|t Quantitative Analysis for Management, Global Edition
|d Harlow, United Kingdom : Pearson Education, Limited,c2017
|z 9781292217659
|
797 |
2 |
|
|a ProQuest (Firm)
|
856 |
4 |
0 |
|u https://ezaccess.library.uitm.edu.my/login?url=https://ebookcentral.proquest.com/lib/uitm-ebooks/detail.action?docID=5186292
|z View fulltext via EzAccess
|
966 |
0 |
|
|a 2021
|b ProQuest Ebook Central
|c UiTM Library
|d Atirah Ruslan
|e Arshad Ayub Graduate Business School (AAGBS)
|f ProQuest
|