Game of Life Cellular Automata

In the late 1960s British mathematician John Conway invented a virtual mathematical machine that operates on a two-dimensional array of square cell. Each cell takes two states, live and dead. The cells states are updated simultaneously and in discrete time. A dead cell comes to life if it has exact...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Adamatzky, Andrew. (Editor)
Format: Electronic
Language:English
Published: London : Springer London, 2010.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84996-217-9
LEADER 04799nam a22004935i 4500
001 9512
003 DE-He213
005 20130725200444.0
007 cr nn 008mamaa
008 100623s2010 xxk| s |||| 0|eng d
020 # # |a 9781849962179  |9 978-1-84996-217-9 
024 7 # |a 10.1007/978-1-84996-217-9  |2 doi 
050 # 4 |a QA75.5-76.95 
072 # 7 |a UY  |2 bicssc 
072 # 7 |a UYA  |2 bicssc 
072 # 7 |a COM014000  |2 bisacsh 
072 # 7 |a COM031000  |2 bisacsh 
082 0 4 |a 004.0151  |2 23 
100 1 # |a Adamatzky, Andrew.  |e editor. 
245 1 0 |a Game of Life Cellular Automata  |c edited by Andrew Adamatzky.  |h [electronic resource] / 
264 # 1 |a London :  |b Springer London,  |c 2010. 
300 # # |a XVI, 621p. 463 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a 1. Introduction to Cellular Automata and Conway s Game of Life -- Part I Historical -- 2. Conway s Game of Life: Early Personal Recollections -- 3. Conway s Life -- 4. Life s Still Lifes -- 5. A Zoo of Life Forms -- Part II Classical Topics -- 6. Growth and Decay in Life-Like Cellular Automata -- 7. The B36/S125 2x2 Life-Like Cellular Automaton -- 8. Object Synthesis in Conway s Game of Life and other Cellular Automata -- 9. Gliders and Glider Guns Discovery in Cellular Automata -- 10. Constraint Programming to Solve Maximal Density Still Life -- Part III Asynchronous, Continuous and Memory-Enriched Automata -- 11. Larger than Life s Extremes: Rigorous Results for Simplified Rules and Speculation on the Phase Boundaries -- 12. RealLife -- 13. Variations on the Game of Life -- 14. Does Life Resist Asynchrony? -- 15. LIFE with Short-Term Memory -- 16. Localization Dynamics in a Binary Two-Dimensional Cellular Automaton: the Diffusion Rule -- Part IV Non-Orthogonal Lattices -- 17. The Game of Life in Non-Square Environments -- 18. The Game of Life Rules on Penrose Tilings: Still Life and Oscillators -- 19. A Spherical XOR Gate Implemented in the Game of Life -- Part V Complexity -- 20. Emergent Complexity in Conway s Game of Life -- 21. Macroscopic Spatial Complexity of the Game of Life Cellular Automaton: A Simple Data Analysis -- Part VI Physics -- 22. The Enlightened Game of Life 23. Towards a Quantum Game of Life -- Part VII Music -- 24. Game of Life Music -- Part VIII Computation -- 25. Universal Computation and Construction in GoL Cellular Automata -- 26. A Simple Universal Turing Machine for the Game of Life Turing Machine -- 27. Computation with Competing Patterns in Life-like Automaton -- Index. 
520 # # |a In the late 1960s British mathematician John Conway invented a virtual mathematical machine that operates on a two-dimensional array of square cell. Each cell takes two states, live and dead. The cells states are updated simultaneously and in discrete time. A dead cell comes to life if it has exactly three live neighbours. A live cell remains alive if two or three of its neighbours are alive, otherwise the cell dies. The Conway s Game of Life became the most programmed solitary game and the most known cellular automaton. The book brings together results of forty years of study into computational, mathematical, physical and engineering aspects of the Game of Life cellular automata. Selected topics include phenomenology and statistical behaviour; space-time dynamics on Penrose tilling and hyperbolic spaces; generation of music; algebraic properties; modelling of financial markets; semi-quantum extensions; predicting emergence; dual-graph based analysis; fuzzy, limit behaviour and threshold scaling; evolving cell-state transition rules; localization dynamics in quasi-chemical analogues of GoL; self-organisation towards criticality; asynochrous implementations. The volume is unique because it gives a comprehensive presentation of the theoretical and experimental foundations, cutting-edge computation techniques and mathematical analysis of the fabulously complex, self-organized and emergent phenomena defined by incredibly simple rules. 
650 # 0 |a Computer science. 
650 # 0 |a Information theory. 
650 # 0 |a Computational complexity. 
650 # 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Computation by Abstract Devices. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781849962162 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84996-217-9 
912 # # |a ZDB-2-SCS 
950 # # |a Computer Science (Springer-11645)