Computational Intelligence in Integrated Airline Scheduling

An airline schedule represents the central planning element of each airline. In general, the objective of airline schedule optimization is to find the airline schedule that maximizes operating profit. This planning task is not only the most important but also the most complex task an airline is conf...

Full description

Bibliographic Details
Main Author: Grosche, Tobias. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Studies in Computational Intelligence, 173
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-89887-0
LEADER 03128nam a22004935i 4500
001 6683
003 DE-He213
005 20130725190712.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540898870  |9 978-3-540-89887-0 
024 7 # |a 10.1007/978-3-540-89887-0  |2 doi 
050 # 4 |a TA329-348 
050 # 4 |a TA640-643 
072 # 7 |a TBJ  |2 bicssc 
072 # 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 # |a Grosche, Tobias.  |e author. 
245 1 0 |a Computational Intelligence in Integrated Airline Scheduling  |c by Tobias Grosche.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Studies in Computational Intelligence,  |v 173  |x 1860-949X ; 
505 0 # |a Introduction -- Airline Scheduling Process -- Foundations of Metaheuristics -- Integrated Airline Scheduling -- Summary, Conclusions, and FutureWork. 
520 # # |a An airline schedule represents the central planning element of each airline. In general, the objective of airline schedule optimization is to find the airline schedule that maximizes operating profit. This planning task is not only the most important but also the most complex task an airline is confronted with. Until now, this task is performed by dividing the overall planning problem into smaller and less complex subproblems that are solved separately in a sequence. However, this procedure is only of minor capability to deal with interdependencies between the subproblems, resulting in less profitable schedules than those being possible with an approach solving the airline schedule optimization problem in one step. In this work, two planning approaches for integrated airline scheduling are presented. One approach follows the traditional sequential approach: existing models from literature for individual subproblems are implemented and enhanced in an overall iterative routine allowing to construct airline schedules from scratch. The other planning appraoch represents a truly simultaneous airline scheduling: using metaheuristics, airline schedules are processed and optimized at once without a separation into different optimization steps for its subproblems. 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 # 0 |a Engineering mathematics. 
650 # 0 |a Business planning. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Organization/Planning. 
650 2 4 |a Automotive Engineering. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540898863 
830 # 0 |a Studies in Computational Intelligence,  |v 173  |x 1860-949X ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-89887-0 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)