Computational Intelligence in Integrated Airline Scheduling

An airline schedule represents the central planning element of each airline. In general, the objective of airline schedule optimization is to find the airline schedule that maximizes operating profit. This planning task is not only the most important but also the most complex task an airline is conf...

Full description

Bibliographic Details
Main Author: Grosche, Tobias. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Studies in Computational Intelligence, 173
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-89887-0
Description
Summary:An airline schedule represents the central planning element of each airline. In general, the objective of airline schedule optimization is to find the airline schedule that maximizes operating profit. This planning task is not only the most important but also the most complex task an airline is confronted with. Until now, this task is performed by dividing the overall planning problem into smaller and less complex subproblems that are solved separately in a sequence. However, this procedure is only of minor capability to deal with interdependencies between the subproblems, resulting in less profitable schedules than those being possible with an approach solving the airline schedule optimization problem in one step. In this work, two planning approaches for integrated airline scheduling are presented. One approach follows the traditional sequential approach: existing models from literature for individual subproblems are implemented and enhanced in an overall iterative routine allowing to construct airline schedules from scratch. The other planning appraoch represents a truly simultaneous airline scheduling: using metaheuristics, airline schedules are processed and optimized at once without a separation into different optimization steps for its subproblems.
Physical Description:online resource.
ISBN:9783540898870
ISSN:1860-949X ;