Neural-Symbolic Cognitive Reasoning

Humans are often extraordinary at performing practical reasoning. There are cases where the human computer, slow as it is, is faster than any artificial intelligence system. Are we faster because of the way we perceive knowledge as opposed to the way we represent it? The authors address this questio...

Full description

Bibliographic Details
Main Authors: d<U+0019>Avila Garcez, Artur S. (Author), Lamb, Lus̕ C. (Author), Gabbay, Dov M. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Cognitive Technologies,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-73246-4
LEADER 03687nam a22005775i 4500
001 6271
003 DE-He213
005 20130725190020.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540732464  |9 978-3-540-73246-4 
024 7 # |a 10.1007/978-3-540-73246-4  |2 doi 
050 # 4 |a Q334-342 
050 # 4 |a TJ210.2-211.495 
072 # 7 |a UYQ  |2 bicssc 
072 # 7 |a TJFM1  |2 bicssc 
072 # 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 # |a d<U+0019>Avila Garcez, Artur S.  |e author. 
245 1 0 |a Neural-Symbolic Cognitive Reasoning  |c by Artur S. d<U+0019>Avila Garcez, Lus̕ C. Lamb, Dov M. Gabbay.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Cognitive Technologies,  |x 1611-2482 
505 0 # |a Introduction -- Logics and Knowledge Representation -- Artificial Neural Networks -- Neural-Symbolic Learning Systems -- Connectionist Modal Logic -- Applications of Connectionist Non-classical Reasoning -- Connectionist Modal Logics in Practice -- Connectionist Temporal Logic -- Connectionist Intuitionistic Logic -- Fibring Neural Networks -- Argumentation Frameworks as Neural Networks -- Probabilistic Reasoning in Neural Networks -- Relational Learning in Neural Networks -- Conclusions. 
520 # # |a Humans are often extraordinary at performing practical reasoning. There are cases where the human computer, slow as it is, is faster than any artificial intelligence system. Are we faster because of the way we perceive knowledge as opposed to the way we represent it? The authors address this question by presenting neural network models that integrate the two most fundamental phenomena of cognition: our ability to learn from experience, and our ability to reason from what has been learned. This book is the first to offer a self-contained presentation of neural network models for a number of computer science logics, including modal, temporal, and epistemic logics. By using a graphical presentation, it explains neural networks through a sound neural-symbolic integration methodology, and it focuses on the benefits of integrating effective robust learning with expressive reasoning capabilities. The book will be invaluable reading for academic researchers, graduate students, and senior undergraduates in computer science, artificial intelligence, machine learning, cognitive science and engineering. It will also be of interest to computational logicians, and professional specialists on applications of cognitive, hybrid and artificial intelligence systems. 
650 # 0 |a Computer science. 
650 # 0 |a Logic. 
650 # 0 |a Information theory. 
650 # 0 |a Artificial intelligence. 
650 # 0 |a Optical pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computation by Abstract Devices. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Logic. 
650 2 4 |a Mathematical Logic and Formal Languages. 
650 2 4 |a Pattern Recognition. 
700 1 # |a Lamb, Lus̕ C.  |e author. 
700 1 # |a Gabbay, Dov M.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540732457 
830 # 0 |a Cognitive Technologies,  |x 1611-2482 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-73246-4 
912 # # |a ZDB-2-SCS 
950 # # |a Computer Science (Springer-11645)