A Course on Finite Groups

A Course on Finite Groups introduces the fundamentals of group theory to advanced undergraduate and beginning graduate students. Based on a series of lecture courses developed by the author over many years, the book starts with the basic definitions and examples and develops the theory to the point...

Full description

Bibliographic Details
Main Author: Rose, H.E. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London, 2009.
Series:Universitext,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84882-889-6
LEADER 03237nam a22004335i 4500
001 6006
003 DE-He213
005 20130725194301.0
007 cr nn 008mamaa
008 100301s2009 xxk| s |||| 0|eng d
020 # # |a 9781848828896  |9 978-1-84882-889-6 
024 7 # |a 10.1007/978-1-84882-889-6  |2 doi 
050 # 4 |a QA174-183 
072 # 7 |a PBG  |2 bicssc 
072 # 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 # |a Rose, H.E.  |e author. 
245 1 2 |a A Course on Finite Groups  |c by H.E. Rose.  |h [electronic resource] / 
264 # 1 |a London :  |b Springer London,  |c 2009. 
300 # # |a XII, 311p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Universitext,  |x 0172-5939 
505 0 # |a The Group Concept -- Elementary Group Properties -- Group Construction and Representation -- Homomorphisms -- Action and the Orbit-Stabiliser Theorem -- p-Groups and Sylow Theory -- Products and Abelian Groups -- Groups of Order 24, Three Examples -- Series, Jordan Hl̲der Theorem and the Extension Problem -- Nilpotency -- Solubility -- Simple Groups of Order Less Than 10000 -- Representation and Character Theory -- Character Tables and Theorems of Burnside and Frobenius -- Appendices. 
520 # # |a A Course on Finite Groups introduces the fundamentals of group theory to advanced undergraduate and beginning graduate students. Based on a series of lecture courses developed by the author over many years, the book starts with the basic definitions and examples and develops the theory to the point where a number of classic theorems can be proved. The topics covered include: group constructions; homomorphisms and isomorphisms; actions; Sylow theory; products and Abelian groups; series; nilpotent and soluble groups; and an introduction to the classification of the finite simple groups. A number of groups are described in detail and the reader is encouraged to work with one of the many computer algebra packages available to construct and experience "actual" groups for themselves in order to develop a deeper understanding of the theory and the significance of the theorems. Numerous problems, of varying levels of difficulty, help to test understanding. A brief resum ̌of the basic set theory and number theory required for the text is provided in an appendix, and a wealth of extra resources is available online at www.springer.com, including: hints and/or full solutions to all of the exercises; extension material for many of the chapters, covering more challenging topics and results for further study; and two additional chapters providing an introduction to group representation theory. 
650 # 0 |a Mathematics. 
650 # 0 |a Group theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781848828889 
830 # 0 |a Universitext,  |x 0172-5939 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84882-889-6 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)