A Course on Finite Groups

A Course on Finite Groups introduces the fundamentals of group theory to advanced undergraduate and beginning graduate students. Based on a series of lecture courses developed by the author over many years, the book starts with the basic definitions and examples and develops the theory to the point...

Full description

Bibliographic Details
Main Author: Rose, H.E. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London, 2009.
Series:Universitext,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84882-889-6
Description
Summary:A Course on Finite Groups introduces the fundamentals of group theory to advanced undergraduate and beginning graduate students. Based on a series of lecture courses developed by the author over many years, the book starts with the basic definitions and examples and develops the theory to the point where a number of classic theorems can be proved. The topics covered include: group constructions; homomorphisms and isomorphisms; actions; Sylow theory; products and Abelian groups; series; nilpotent and soluble groups; and an introduction to the classification of the finite simple groups. A number of groups are described in detail and the reader is encouraged to work with one of the many computer algebra packages available to construct and experience "actual" groups for themselves in order to develop a deeper understanding of the theory and the significance of the theorems. Numerous problems, of varying levels of difficulty, help to test understanding. A brief resum ̌of the basic set theory and number theory required for the text is provided in an appendix, and a wealth of extra resources is available online at www.springer.com, including: hints and/or full solutions to all of the exercises; extension material for many of the chapters, covering more challenging topics and results for further study; and two additional chapters providing an introduction to group representation theory.
Physical Description:XII, 311p. online resource.
ISBN:9781848828896
ISSN:0172-5939