Introductory medical imaging

This book provides an introduction to the principles of several of the more widely used methods in medical imaging. Intended for engineering students, it provides a final-year undergraduate- or graduate-level introduction to several imaging modalities, including MRI, ultrasound and X-Ray CT. The emp...

Full description

Bibliographic Details
Main Author: Bharath, A. A.
Format: Electronic
Language:English
Published: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool Publishers, c2009.
Series:Synthesis lectures on biomedical engineering (Online) ; # 27.
Subjects:
Online Access:Abstract with links to full text
LEADER 07010nam a2200565 a 4500
001 3378
005 20081216144057.0
006 m e d
007 cr cn |||m|||a
008 081210s2009 caua fsab 000 0 eng d
020 # # |a 9781598296129 (electronic bk.) 
020 # # |a 9781598296112 (pbk.) 
024 7 # |a 10.2200/S00165ED1V01Y200811BME026  |2 doi 
035 # # |a (CaBNvSL)gtp00532205 
040 # # |a CaBNvSL  |c CaBNvSL  |d CaBNvSL 
050 # 4 |a RC78.7.D53  |b B425 2009 
082 0 4 |a 616.0754  |2 22 
100 1 # |a Bharath, A. A.  |q (Anil Anthony) 
245 1 0 |a Introductory medical imaging  |c A. A. Bharath.  |h [electronic resource] / 
260 # # |a San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) :  |b Morgan & Claypool Publishers,  |c c2009. 
300 # # |a 1 electronic text (xiv, 172 p. : ill.) :  |b digital file. 
490 1 # |a Synthesis lectures on biomedical engineering,  |v # 27  |x 1930-0336 ; 
500 # # |a Part of: Synthesis digital library of engineering and computer science. 
500 # # |a Title from PDF t.p. (viewed on December 10, 2008). 
500 # # |a Series from website. 
504 # # |a Includes bibliographical references (p. 171-172). 
505 0 # |a Introduction -- Diagnostic x-ray imaging -- Basic principles of x-ray imaging -- Ideal description of imaging process -- Relevant physics -- Atomic structure -- Nature of x-rays -- X-ray generation -- X-ray spectra -- X-ray interactions with matter -- Attenuation -- The basics -- Variation of linear attenuation coefficient -- Beam hardening -- Image formation physics -- Film -- Modelling film characteristics -- X-ray image quality -- Broad image quality goals -- The real imaging process -- Geometrical considerations -- Quantum (photon) considerations -- Beam hardening -- Film effects -- Grouping the effects of unsharpness -- Quantitative measures of image quality -- Measures of spatial resolution -- Measures of contrast -- Dosage -- Exposure -- Absorbed dose -- KERMA -- Converting exposure to absorbed dose in air -- Dose in air vs dose in tissue -- Genetic & effective dose equivalents -- Dose and image contrast -- Dose and signal/noise ratio -- Practical issues -- The x-ray source -- Spatial distribution of x-ray photons -- Receptors -- Dosage & contrast issues -- Contrast agents -- Safety -- X-ray CT -- Planar x-rays: review -- Limitations -- Solutions to contrast and depth collapse -- Slicing Fred -- Linear projections -- Basic principle of CT -- Algebraic interpretation -- The central slice theorem -- Demonstration -- Convolution backprojection algorithm -- Backprojection -- Determining h(x) -- Scanning configurations and implementation -- Introduction -- First generation scanners -- Second generation systems -- Third generation scanners -- Fourth generation scanners -- Fifth generation scanners -- 6th generation -- Spiral reconstruction -- Image quality -- Spatial resolution -- Spatial resolution -- Physical factors in spatial resolution -- Density resolution -- CT image artefacts -- Streak & ring artefact -- Patient-related artefacts -- X-ray CT inherent -- Digital image manipulation -- Grey-scale windowing -- ROI selection -- Ultrasonics -- Basic physics -- The intensity of a planewave -- The acoustic impedance -- Propagation of HPW across acoustic interface -- Summary -- Finite aperture excitation -- The Fraunhofer approximation -- Summary -- Real acoustic media -- Attenuation -- Empirical treatment -- Ideal imaging parameters -- Axial resolution -- Lateral resolution -- Constraints -- Summary -- Pulse-echo ultrasonic imaging -- Introduction -- Applications -- Principles of operation -- Acoustic pulse generation -- Scanning geometries -- Implementation -- Linear B-mode -- Signal detection -- Image quality -- Image artefact -- Resolution -- Frame rate -- Doppler velocimetry -- Introduction -- Basic physics -- Reflection vs scattering -- Scattering of ultrasound by blood -- Doppler effect basics -- The continuous wave Doppler flowmeter -- Doppler signal demodulation -- Remarks -- Limitations of the CW flowmeter -- Attributes of the CW flowmeter -- The pulsed wave Doppler flowmeter -- Instrumentation -- Remarks -- Limitations of the pulsed Doppler velocimeter -- Rounding up -- An introduction to MRI -- Introduction -- Books and suggested reading -- Basic principles -- A brief history -- Motion within the atom -- The bare necessities of the QM description -- Classical description -- Orientation -- The net magnetisation vector -- Interacting with M -- The motion of M -- Relaxation processes -- The Bloch equations -- Significance of T1 and T2 -- T2 vs T2 -- Summary of relaxation -- Basic sequences -- Free induction decay -- Partial saturation -- Saturation recovery -- Inversion recovery sequence -- The spin echo sequence -- Contrast -- Proton density weighting -- T2 weighted -- T1 weighted -- Brain tissue contrast: example -- Summary -- Where's that echo coming from? -- Slice selection -- In-plane localisation -- Frequency encoding -- The signal detection process -- k-space -- Practically speaking -- Wrapping up -- Wave equations for ultrasound -- Derivation of the HWE -- The continuous medium -- The 3D acoustic wave equation -- Mathematical conventions used -- Convolution -- Sifting property -- Fourier transform -- Polar integrals. 
506 # # |a Abstract freely available; full-text restricted to subscribers or individual document purchasers. 
510 0 # |a Compendex 
510 0 # |a INSPEC 
510 0 # |a Google scholar 
510 0 # |a Google book search 
520 # # |a This book provides an introduction to the principles of several of the more widely used methods in medical imaging. Intended for engineering students, it provides a final-year undergraduate- or graduate-level introduction to several imaging modalities, including MRI, ultrasound and X-Ray CT. The emphasis of the text is on mathematical models for imaging and image reconstruction physics. Emphasis is also given to sources of imaging artefacts. Such topics are usually not addressed across the different imaging modalities in one book, and this is a notable strength of the treatment given here. 
530 # # |a Also available in print. 
538 # # |a Mode of access: World Wide Web. 
538 # # |a System requirements: Adobe Acrobat reader. 
650 # 0 |a Diagnostic imaging  |x Mathematical models. 
650 # 0 |a Image reconstruction  |x Mathematical models. 
690 # # |a Medical imaging. 
690 # # |a Ultrasonic imaging. 
690 # # |a X-Ray imaging. 
690 # # |a Magnetic resonance imaging. 
690 # # |a Computer aided tomography (CAT) 
690 # # |a Mathematical models for imaging. 
690 # # |a Image formation physics. 
690 # # |a Image reconstruction. 
730 0 # |a Synthesis digital library of engineering and computer science. 
830 # 0 |a Synthesis lectures on biomedical engineering (Online) ;  |v # 27. 
856 4 2 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.2200/S00165ED1V01Y200811BME026  |3 Abstract with links to full text