Handbook of Causal Analysis for Social Research

What constitutes a causal explanation, and must an explanation be causal?�What warrants a causal inference, as opposed to a descriptive regularity?�What techniques are available to detect when causal effects are present, and when can these techniques be used to identify the relative importance of th...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Morgan, Stephen L. (Editor)
Format: Electronic
Language:English
Published: Dordrecht : Springer Netherlands : Imprint: Springer, 2013.
Series:Handbooks of Sociology and Social Research,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-94-007-6094-3
Table of Contents:
  • Preface
  • Chapter 1. Introduction; Stephen L. Morgan
  • Part I. Background�and Approaches to Analysis
  • Chapter�2. A History of Causal Analysis in the Social Sciences; Sondra N. Barringer, Erin Leahey and Scott R. Eliason
  • Chapter 3. Types of Causes; Jeremy Freese and J. Alex Kevern
  • Part II. Design and Modeling Choices
  • Chapter 4. Research Design:�Toward a Realistic Role for Causal Analysis;�Herbert L.�Smith
  • Chapter�5. Causal Models and Counterfactuals; James Mahoney, Gary Goertz and Charles C. Ragin
  • Chapter 6. Mixed Models and Counterfactuals; David J. Harding and Kristin S. Seefeldt
  • Part III. Beyond Conventional Regression Models
  • Chapter 7.�Fixed Effects, Random Effects, and Hybrid Models for Causal Analysis; Glenn�Firebaugh, Cody Warner, and Michael Massoglia
  • Chapter 8. Heteroscedastic Regression Models for the Systematic Analysis of Residual Variance; Hui Zheng, Yang Yang and Kenneth C. Land
  • Chapter 9. Group Differences in Generalized Linear Models; Tim F. Liao
  • Chapter 10. Counterfactual Causal Analysis and Non-Linear Probability Models; Richard Breen and Kristian Bernt Karlson
  • Chapter 11. Causal Effect Heterogeneity; Jennie E. Brand and Juli Simon Thomas
  • Chapter12. New Perspectives on Causal Mediation Analysis; Xiaolu Wang and Michael E. Sobel
  • Part IV. Systems and Causal Relationships
  • Chapter 13. Graphical Causal Models; Felix Elwert
  • Chapter 14. The Causal Implications of� Mechanistic Thinking: Identification Using Directed Acyclic Graphs (DAGs); Carly R. Knight and Christopher Winship
  • Chapter 15. Eight Myths about Causality and Structural Equation�Models; Kenneth A. Bollen and Judea Pearl
  • Part V. Influence and Interference
  • Chapter 16. Heterogeneous Agents, Social Interactions, and Causal Inference; Guanglei Hong and Stephen W. Raudenbush
  • Chapter 17. Social Networks and Causal Inference; Tyler J. VanderWeele and Weihua An
  • Part VI.�Retreat From Effect Identification
  • Chapter 18. Partial Identification and Sensitivity Analysis; Markus Gangl
  • Chapter 19. What You can Learn from Wrong Causal Models; Richard Berk, Lawrence Brown, Edward George, Emil Pitkin, Mikhail Traskin, Kai Zhang and Linda Zhao.