Handbook of Causal Analysis for Social Research

What constitutes a causal explanation, and must an explanation be causal?�What warrants a causal inference, as opposed to a descriptive regularity?�What techniques are available to detect when causal effects are present, and when can these techniques be used to identify the relative importance of th...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Morgan, Stephen L. (Editor)
Format: Electronic
Language:English
Published: Dordrecht : Springer Netherlands : Imprint: Springer, 2013.
Series:Handbooks of Sociology and Social Research,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-94-007-6094-3
LEADER 04715nam a22004695i 4500
001 17343
003 DE-He213
005 20130727074835.0
007 cr nn 008mamaa
008 130423s2013 ne | s |||| 0|eng d
020 # # |a 9789400760943  |9 978-94-007-6094-3 
024 7 # |a 10.1007/978-94-007-6094-3  |2 doi 
050 # 4 |a HM401-1281 
072 # 7 |a JHB  |2 bicssc 
072 # 7 |a SOC026000  |2 bisacsh 
082 0 4 |a 301  |2 23 
100 1 # |a Morgan, Stephen L.  |e editor. 
245 1 0 |a Handbook of Causal Analysis for Social Research  |c edited by Stephen L. Morgan.  |h [electronic resource] / 
264 # 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2013. 
300 # # |a XI, 424 p. 63 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Handbooks of Sociology and Social Research,  |x 1389-6903 
505 0 # |a Preface -- Chapter 1. Introduction; Stephen L. Morgan -- Part I. Background�and Approaches to Analysis -- Chapter�2. A History of Causal Analysis in the Social Sciences; Sondra N. Barringer, Erin Leahey and Scott R. Eliason -- Chapter 3. Types of Causes; Jeremy Freese and J. Alex Kevern -- Part II. Design and Modeling Choices -- Chapter 4. Research Design:�Toward a Realistic Role for Causal Analysis;�Herbert L.�Smith -- Chapter�5. Causal Models and Counterfactuals; James Mahoney, Gary Goertz and Charles C. Ragin -- Chapter 6. Mixed Models and Counterfactuals; David J. Harding and Kristin S. Seefeldt -- Part III. Beyond Conventional Regression Models -- Chapter 7.�Fixed Effects, Random Effects, and Hybrid Models for Causal Analysis; Glenn�Firebaugh, Cody Warner, and Michael Massoglia -- Chapter 8. Heteroscedastic Regression Models for the Systematic Analysis of Residual Variance; Hui Zheng, Yang Yang and Kenneth C. Land -- Chapter 9. Group Differences in Generalized Linear Models; Tim F. Liao -- Chapter 10. Counterfactual Causal Analysis and Non-Linear Probability Models; Richard Breen and Kristian Bernt Karlson -- Chapter 11. Causal Effect Heterogeneity; Jennie E. Brand and Juli Simon Thomas -- Chapter12. New Perspectives on Causal Mediation Analysis; Xiaolu Wang and Michael E. Sobel -- Part IV. Systems and Causal Relationships -- Chapter 13. Graphical Causal Models; Felix Elwert -- Chapter 14. The Causal Implications of� Mechanistic Thinking: Identification Using Directed Acyclic Graphs (DAGs); Carly R. Knight and Christopher Winship -- Chapter 15. Eight Myths about Causality and Structural Equation�Models; Kenneth A. Bollen and Judea Pearl -- Part V. Influence and Interference -- Chapter 16. Heterogeneous Agents, Social Interactions, and Causal Inference; Guanglei Hong and Stephen W. Raudenbush -- Chapter 17. Social Networks and Causal Inference; Tyler J. VanderWeele and Weihua An -- Part VI.�Retreat From Effect Identification -- Chapter 18. Partial Identification and Sensitivity Analysis; Markus Gangl -- Chapter 19. What You can Learn from Wrong Causal Models; Richard Berk, Lawrence Brown, Edward George, Emil Pitkin, Mikhail Traskin, Kai Zhang and Linda Zhao. 
520 # # |a What constitutes a causal explanation, and must an explanation be causal?�What warrants a causal inference, as opposed to a descriptive regularity?�What techniques are available to detect when causal effects are present, and when can these techniques be used to identify the relative importance of these effects?�What complications do the interactions of individuals create for these techniques?�When can mixed methods of analysis be used to deepen causal accounts?�Must causal claims include generative mechanisms, and how effective are empirical methods designed to discover them?�The Handbook of Causal Anlaysis for Social Research tackles these questions with nineteen chapters from leading scholars in sociology, statistics, public health, computer science, and human development.�� 
650 # 0 |a Social sciences. 
650 # 0 |a Statistics. 
650 # 0 |a Social sciences  |x Methodology. 
650 1 4 |a Social Sciences. 
650 2 4 |a Sociology, general. 
650 2 4 |a Methodology of the Social Sciences. 
650 2 4 |a Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789400760936 
830 # 0 |a Handbooks of Sociology and Social Research,  |x 1389-6903 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-94-007-6094-3 
912 # # |a ZDB-2-SHU 
950 # # |a Humanities, Social Sciences and Law (Springer-11648)