Handbook on Neural Information Processing

This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include: ����������������������� Deep architectures ����������������������� Recurrent, recursive, and graph neural networks �������...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Bianchini, Monica. (Editor), Maggini, Marco. (Editor), Jain, Lakhmi C. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Intelligent Systems Reference Library, 49
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-36657-4
LEADER 03404nam a22004695i 4500
001 15652
003 DE-He213
005 20130727075507.0
007 cr nn 008mamaa
008 130413s2013 gw | s |||| 0|eng d
020 # # |a 9783642366574  |9 978-3-642-36657-4 
024 7 # |a 10.1007/978-3-642-36657-4  |2 doi 
050 # 4 |a Q342 
072 # 7 |a UYQ  |2 bicssc 
072 # 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 # |a Bianchini, Monica.  |e editor. 
245 1 0 |a Handbook on Neural Information Processing  |c edited by Monica Bianchini, Marco Maggini, Lakhmi C. Jain.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XX, 538 p. 144 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Intelligent Systems Reference Library,  |v 49  |x 1868-4394 ; 
505 0 # |a Neural Network Architectures -- Learning paradigms -- Reasoning and applications -- conclusions. Reasoning and applications -- conclusions. Reasoning and applications -- conclusions. 
520 # # |a This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include: ����������������������� Deep architectures ����������������������� Recurrent, recursive, and graph neural networks ����������������������� Cellular neural networks ����������������������� Bayesian networks ����������������������� Approximation capabilities of neural networks ����������������������� Semi-supervised learning ����������������������� Statistical relational learning ����������������������� Kernel methods for structured data ����������������������� Multiple classifier systems ����������������������� Self organisation and modal learning ����������������������� Applications to content-based image retrieval, text mining in large document collections, and bioinformatics � This book is thought particularly for graduate students, researchers and practitioners, willing to deepen their knowledge on more advanced connectionist models and related learning paradigms. 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 # |a Maggini, Marco.  |e editor. 
700 1 # |a Jain, Lakhmi C.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642366567 
830 # 0 |a Intelligent Systems Reference Library,  |v 49  |x 1868-4394 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-36657-4 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)