|
|
|
|
LEADER |
03404nam a22004695i 4500 |
001 |
15652 |
003 |
DE-He213 |
005 |
20130727075507.0 |
007 |
cr nn 008mamaa |
008 |
130413s2013 gw | s |||| 0|eng d |
020 |
# |
# |
|a 9783642366574
|9 978-3-642-36657-4
|
024 |
7 |
# |
|a 10.1007/978-3-642-36657-4
|2 doi
|
050 |
# |
4 |
|a Q342
|
072 |
# |
7 |
|a UYQ
|2 bicssc
|
072 |
# |
7 |
|a COM004000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.3
|2 23
|
100 |
1 |
# |
|a Bianchini, Monica.
|e editor.
|
245 |
1 |
0 |
|a Handbook on Neural Information Processing
|c edited by Monica Bianchini, Marco Maggini, Lakhmi C. Jain.
|h [electronic resource] /
|
264 |
# |
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2013.
|
300 |
# |
# |
|a XX, 538 p. 144 illus.
|b online resource.
|
336 |
# |
# |
|a text
|b txt
|2 rdacontent
|
337 |
# |
# |
|a computer
|b c
|2 rdamedia
|
338 |
# |
# |
|a online resource
|b cr
|2 rdacarrier
|
347 |
# |
# |
|a text file
|b PDF
|2 rda
|
490 |
1 |
# |
|a Intelligent Systems Reference Library,
|v 49
|x 1868-4394 ;
|
505 |
0 |
# |
|a Neural Network Architectures -- Learning paradigms -- Reasoning and applications -- conclusions. Reasoning and applications -- conclusions. Reasoning and applications -- conclusions.
|
520 |
# |
# |
|a This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include: ����������������������� Deep architectures ����������������������� Recurrent, recursive, and graph neural networks ����������������������� Cellular neural networks ����������������������� Bayesian networks ����������������������� Approximation capabilities of neural networks ����������������������� Semi-supervised learning ����������������������� Statistical relational learning ����������������������� Kernel methods for structured data ����������������������� Multiple classifier systems ����������������������� Self organisation and modal learning ����������������������� Applications to content-based image retrieval, text mining in large document collections, and bioinformatics � This book is thought particularly for graduate students, researchers and practitioners, willing to deepen their knowledge on more advanced connectionist models and related learning paradigms.
|
650 |
# |
0 |
|a Engineering.
|
650 |
# |
0 |
|a Artificial intelligence.
|
650 |
1 |
4 |
|a Engineering.
|
650 |
2 |
4 |
|a Computational Intelligence.
|
650 |
2 |
4 |
|a Artificial Intelligence (incl. Robotics).
|
700 |
1 |
# |
|a Maggini, Marco.
|e editor.
|
700 |
1 |
# |
|a Jain, Lakhmi C.
|e editor.
|
710 |
2 |
# |
|a SpringerLink (Online service)
|
773 |
0 |
# |
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642366567
|
830 |
# |
0 |
|a Intelligent Systems Reference Library,
|v 49
|x 1868-4394 ;
|
856 |
4 |
0 |
|u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-36657-4
|
912 |
# |
# |
|a ZDB-2-ENG
|
950 |
# |
# |
|a Engineering (Springer-11647)
|