Handbook on Neural Information Processing

This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include: ����������������������� Deep architectures ����������������������� Recurrent, recursive, and graph neural networks �������...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Bianchini, Monica. (Editor), Maggini, Marco. (Editor), Jain, Lakhmi C. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Intelligent Systems Reference Library, 49
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-36657-4
Description
Summary:This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include: ����������������������� Deep architectures ����������������������� Recurrent, recursive, and graph neural networks ����������������������� Cellular neural networks ����������������������� Bayesian networks ����������������������� Approximation capabilities of neural networks ����������������������� Semi-supervised learning ����������������������� Statistical relational learning ����������������������� Kernel methods for structured data ����������������������� Multiple classifier systems ����������������������� Self organisation and modal learning ����������������������� Applications to content-based image retrieval, text mining in large document collections, and bioinformatics � This book is thought particularly for graduate students, researchers and practitioners, willing to deepen their knowledge on more advanced connectionist models and related learning paradigms.
Physical Description:XX, 538 p. 144 illus. online resource.
ISBN:9783642366574
ISSN:1868-4394 ;