On Statistical Pattern Recognition in Independent Component Analysis Mixture Modelling

A natural evolution of statistical signal processing, in connection with the progressive increase in computational power, has been exploiting higher-order information. Thus, high-order spectral analysis and nonlinear adaptive filtering have received the attention of many researchers. One of the most...

Full description

Bibliographic Details
Main Author: Salazar, Addisson. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Springer Theses, Recognizing Outstanding Ph.D. Research, 4
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-30752-2
LEADER 03077nam a22005175i 4500
001 14761
003 DE-He213
005 20130727034523.0
007 cr nn 008mamaa
008 120720s2013 gw | s |||| 0|eng d
020 # # |a 9783642307522  |9 978-3-642-30752-2 
024 7 # |a 10.1007/978-3-642-30752-2  |2 doi 
050 # 4 |a TK5102.9 
050 # 4 |a TA1637-1638 
050 # 4 |a TK7882.S65 
072 # 7 |a TTBM  |2 bicssc 
072 # 7 |a UYS  |2 bicssc 
072 # 7 |a TEC008000  |2 bisacsh 
072 # 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 # |a Salazar, Addisson.  |e author. 
245 1 0 |a On Statistical Pattern Recognition in Independent Component Analysis Mixture Modelling  |c by Addisson Salazar.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XXII, 185 p. 73 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |v 4  |x 2190-5053 ; 
505 0 # |a Introduction -- ICA and ICAMM Methods -- Learning Mixtures of Independent Component Analysers -- Hierarchical Clustering from ICA Mixtures -- Application of ICAMM to Impact-Echo Testing -- Cultural Heritage Applications: Archaeological Ceramics and Building Restoration -- Other Applications: Sequential Dependence Modelling and Data Mining -- Conclusions. 
520 # # |a A natural evolution of statistical signal processing, in connection with the progressive increase in computational power, has been exploiting higher-order information. Thus, high-order spectral analysis and nonlinear adaptive filtering have received the attention of many researchers. One of the most successful techniques for non-linear processing of data with complex non-Gaussian distributions is the independent component analysis mixture modelling (ICAMM). This thesis defines a novel formalism for pattern recognition and classification based on ICAMM, which unifies a certain number of pattern recognition tasks allowing generalization. The versatile and powerful framework developed in this work can deal with data obtained from quite different areas, such as image processing, impact-echo testing, cultural heritage, hypnograms analysis, web-mining and might therefore be employed to solve many different real-world problems. 
650 # 0 |a Engineering. 
650 # 0 |a Optical pattern recognition. 
650 # 0 |a Physics. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Complexity. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642307515 
830 # 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |v 4  |x 2190-5053 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-30752-2 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)