Symmetry and Pattern in Projective Geometry

Symmetry and Pattern in Projective Geometry is a self-contained study of projective geometry which compares and contrasts the analytic and axiomatic methods.The analytic approach is based on homogeneous coordinates. Brief introductions to Pl<U+00fc>cker coordinates and Grassmann coordinates ar...

Full description

Bibliographic Details
Main Author: Lord, Eric. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London : Imprint: Springer, 2013.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4471-4631-5
LEADER 02803nam a22004335i 4500
001 12598
003 DE-He213
005 20130727060603.0
007 cr nn 008mamaa
008 121213s2013 xxk| s |||| 0|eng d
020 # # |a 9781447146315  |9 978-1-4471-4631-5 
024 7 # |a 10.1007/978-1-4471-4631-5  |2 doi 
050 # 4 |a QA471 
072 # 7 |a PBM  |2 bicssc 
072 # 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516.5  |2 23 
100 1 # |a Lord, Eric.  |e author. 
245 1 0 |a Symmetry and Pattern in Projective Geometry  |c by Eric Lord.  |h [electronic resource] / 
264 # 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 # # |a XI, 184 p. 103 illus., 20 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Foundations: the Synthetic Approach -- The Analytic Approach -- Linear Figures -- Quadratic Figures -- Cubic Figures -- Quartic Figures -- Finite Geometries. 
520 # # |a Symmetry and Pattern in Projective Geometry is a self-contained study of projective geometry which compares and contrasts the analytic and axiomatic methods.The analytic approach is based on homogeneous coordinates. Brief introductions to Pl<U+00fc>cker coordinates and Grassmann coordinates are also presented. This book looks carefully at linear, quadratic, cubic and quartic figures in two, three and higher dimensions. It deals at length with the extensions and consequences of basic theorems such as those of Pappus and Desargues. The emphasis throughout is on special configurations that have particularly interesting symmetry properties. The intricate and novel ideas of H S M Coxeter, who is considered one of the great geometers of the twentieth century, are also discussed throughout the text. The book concludes with a useful analysis of finite geometries and a description of some of the remarkable configurations discovered by Coxeter. This book will be appreciated by mathematics undergraduate students and those wishing to learn more about the subject of geometry. Subject and theorems that are often considered quite complicated are made accessible and presented in an easy-to-read and enjoyable manner.  
650 # 0 |a Mathematics. 
650 # 0 |a Algebra  |x Data processing. 
650 1 4 |a Mathematics. 
650 2 4 |a Projective Geometry. 
650 2 4 |a Symbolic and Algebraic Manipulation. 
650 2 4 |a Mathematics, general. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447146308 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4471-4631-5 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)