Data mining and business analytics with R /

Collecting, analyzing, and extracting valuable information from a large amount of data requires easily accessible, robust, computational and analytical tools. Data Mining and Business Analytics with R utilizes the open source software R for the analysis, exploration, and simplification of large high...

Full description

Bibliographic Details
Main Author: Ledolter, Johannes.
Format: eBook
Language:English
Published: Hoboken, New Jersey : John Wiley & Sons, Inc., [2013]
Subjects:
Online Access:View fulltext via EzAccess
LEADER 05751cam a2200721 i 4500
001 ocn824686642
003 OCoLC
005 20170124070200.7
006 m o d
007 cr |||||||||||
008 130118s2013 nju ob 001 0 eng
010 |a  2013002488 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d DG1  |d N$T  |d YDXCP  |d CUS  |d E7B  |d NOC  |d OCLCF  |d MERUC  |d EBLCP  |d MHW  |d IAI  |d B24X7  |d UPM  |d RECBK  |d DEBSZ  |d OCLCQ  |d RRP  |d TEFOD 
019 |a 847348402  |a 849724445  |a 855115737  |a 864915196 
020 |a 9781118596289  |q electronic bk. 
020 |a 1118596285  |q electronic bk. 
020 |a 9781118593745  |q electronic bk. 
020 |a 111859374X  |q electronic bk. 
020 |a 9781118572153  |q electronic bk. 
020 |a 1118572157  |q electronic bk. 
020 |z 9781118572221 
020 |z 111857222X 
020 |z 9781118447147  |q (cloth) 
020 |z 111844714X  |q (cloth) 
028 0 1 |a EB00063900  |b Recorded Books 
029 1 |a AU@  |b 000053295486 
029 1 |a AU@  |b 000053297900 
029 1 |a CHNEW  |b 000720270 
029 1 |a DEBBG  |b BV041637074 
029 1 |a DEBSZ  |b 431428743 
029 1 |a DKDLA  |b 820120-katalog:000652797 
029 1 |a NLGGC  |b 358120942 
029 1 |a NZ1  |b 15142930 
029 1 |a NZ1  |b 15340518 
035 |a (OCoLC)824686642  |z (OCoLC)847348402  |z (OCoLC)849724445  |z (OCoLC)855115737  |z (OCoLC)864915196 
037 |a 0B305E2E-E901-4EAB-9139-89A2D33817FF  |b OverDrive, Inc.  |n http://www.overdrive.com 
042 |a pcc 
050 0 0 |a QA76.9.D343 
072 7 |a COM  |x 021030  |2 bisacsh 
082 0 0 |a 006.3/12  |2 23 
049 |a MAIN 
100 1 |a Ledolter, Johannes. 
245 1 0 |a Data mining and business analytics with R /  |c Johannes Ledolter, University of Iowa. 
264 1 |a Hoboken, New Jersey :  |b John Wiley & Sons, Inc.,  |c [2013] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher. 
520 |a Collecting, analyzing, and extracting valuable information from a large amount of data requires easily accessible, robust, computational and analytical tools. Data Mining and Business Analytics with R utilizes the open source software R for the analysis, exploration, and simplification of large high-dimensional data sets. As a result, readers are provided with the needed guidance to model and interpret complicated data and become adept at building powerful models for prediction and classification. Highlighting both underlying concepts and practical computational skills, Data Mining and Business Analytics with R begins with coverage of standard linear regression and the importance of parsimony in statistical modeling. The book includes important topics such as penalty-based variable selection (LASSO); logistic regression; regression and classification trees; clustering; principal components and partial least squares; and the analysis of text and network data. In addition, the book presents: * A thorough discussion and extensive demonstration of the theory behind the most useful data mining tools * Illustrations of how to use the outlined concepts in real-world situations * Readily available additional data sets and related R code allowing readers to apply their own analyses to the discussed materials * Numerous exercises to help readers with computing skills and deepen their understanding of the material. Data Mining and Business Analytics with R is an excellent graduate-level textbook for courses on data mining and business analytics. The book is also a valuable reference for practitioners who collect and analyze data in the fields of finance, operations management, marketing, and the information sciences. 
505 0 |a Introduction -- Processing the information and getting to know your data -- Standard linear regression -- Local polynomial regression: a nonparametric regression approach -- Importance of parsimony in statistical modeling -- Penalty-based variable selection in regression models with many parameters (LASSO) -- Logistic regression -- Binary classification, probabilities, and evaluating classification performance -- Classification using a nearest neighbor analysis -- The Naïve Bayesian analysis: a model predicting a categorical response from mostly categorical predictor variables -- Multinomial logistic regression -- More on classification and a discussion on discriminant analysis -- Decision trees -- Further discussion on regression and classification trees, computer software, and other useful classification methods -- Clustering -- Market basket analysis: association rules and lift -- Dimension reduction: factor models and principal components -- Reducing the dimension in regressions with multicollinear inputs: principal components regression and partial least squares -- Text as data: text mining and sentiment analysis -- Network data -- Appendices: A. Exercises -- B. References. 
650 0 |a Data mining. 
650 0 |a R (Computer program language) 
650 0 |a Commercial statistics. 
650 7 |a COMPUTERS  |x Database Management  |x Data Mining.  |2 bisacsh 
650 7 |a Commercial statistics.  |2 fast  |0 (OCoLC)fst00869640 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a R (Computer program language)  |2 fast  |0 (OCoLC)fst01086207 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Ledolter, Johannes.  |t Business analytics and data mining with R.  |d Hoboken, New Jersey : John Wiley & Sons, Inc., [2013]  |z 9781118447147  |w (DLC) 2013000330 
856 4 0 |z View fulltext via EzAccess  |u https://ezaccess.library.uitm.edu.my/login?url=https://doi.org/10.1002/9781118596289 
994 |a 92  |b DG1