ISE EBook Online Access for Statistical Techniques in Business and Economics.

Bibliographic Details
Main Author: Marchal, William.
Other Authors: Wathen, Samuel.
Format: eBook
Language:English
Published: NY : McGraw-Hill US Higher Ed ISE, 2017.
Edition:17th ed.
Subjects:
Online Access:View fulltext via EzAccess
LEADER 11454nam a22005173i 4500
001 EBC5662634
003 MiAaPQ
005 20210318061024.0
006 m o d |
007 cr cnu||||||||
008 210318s2017 xx o ||||0 eng d
020 |a 9781260547399  |q (electronic bk.) 
035 |a (MiAaPQ)EBC5662634 
035 |a (Au-PeEL)EBL5662634 
035 |a (OCoLC)1085173614 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a HA29  |b .L563 2017 
082 0 |a 519.5 
100 1 |a Marchal, William. 
245 1 0 |a ISE EBook Online Access for Statistical Techniques in Business and Economics. 
250 |a 17th ed. 
264 1 |a NY :  |b McGraw-Hill US Higher Ed ISE,  |c 2017. 
264 4 |c ©2018. 
300 |a 1 online resource (897 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover -- Title Page -- Copyright Page -- Dedication -- A Note from the Authors -- Acknowledgments -- Brief Contents -- Contents -- 1 What is Statistics? -- Introduction -- Why Study Statistics? -- What is Meant by Statistics? -- Types of Statistics -- Descriptive Statistics -- Inferential Statistics -- Types of Variables -- Levels of Measurement -- Nominal-Level Data -- Ordinal-Level Data -- Interval-Level Data -- Ratio-Level Data -- EXERCISES -- Ethics and Statistics -- Basic Business Analytics -- Chapter Summary -- Chapter Exercises -- Data Analytics -- 2 Describing Data: FREQUENCY TABLES, FREQUENCY DISTRIBUTIONS, AND GRAPHIC PRESENTATION -- Introduction -- Constructing Frequency Tables -- Relative Class Frequencies -- Graphic Presentation of Qualitative Data -- EXERCISES -- Constructing Frequency Distributions -- Relative Frequency Distribution -- EXERCISES -- Graphic Presentation of a Distribution -- Histogram -- Frequency Polygon -- EXERCISES -- Cumulative Distributions -- EXERCISES -- Chapter Summary -- Chapter Exercises -- Data Analytics -- 3 Describing Data: NUMERICAL MEASURES -- Introduction -- Measures of Location -- The Population Mean -- The Sample Mean -- Properties of the Arithmetic Mean -- EXERCISES -- The Median -- The Mode -- EXERCISES -- The Relative Positions of the Mean, Median, and Mode -- EXERCISES -- Software Solution -- The Weighted Mean -- EXERCISES -- The Geometric Mean -- EXERCISES -- Why Study Dispersion? -- Range -- Variance -- EXERCISES -- Population Variance -- Population Standard Deviation -- EXERCISES -- Sample Variance and Standard Deviation -- Software Solution -- EXERCISES -- Interpretation and Uses of the Standard Deviation -- Chebyshev's Theorem -- The Empirical Rule -- EXERCISES -- The Mean and Standard Deviation of Grouped Data -- Arithmetic Mean of Grouped Data -- Standard Deviation of Grouped Data. 
505 8 |a EXERCISES -- Ethics and Reporting Results -- Chapter Summary -- Pronunciation Key -- Chapter Exercises -- Data Analytics -- 4 Describing Data: DISPLAYING AND EXPLORING DATA -- Introduction -- Dot Plots -- Stem-and-Leaf Displays -- EXERCISES -- Measures of Position -- Quartiles, Deciles, and Percentiles -- EXERCISES -- Box Plots -- EXERCISES -- Skewness -- EXERCISES -- Describing the Relationship between Two Variables -- Contingency Tables -- EXERCISES -- Chapter Summary -- Pronunciation Key -- Chapter Exercises -- Data Analytics -- Problems -- Cases -- Practice Test -- 5 A Survey of Probability Concepts -- Introduction -- What is a Probability? -- Approaches to Assigning Probabilities -- Classical Probability -- Empirical Probability -- Subjective Probability -- EXERCISES -- Rules of Addition for Computing Probabilities -- Special Rule of Addition -- Complement Rule -- The General Rule of Addition -- EXERCISES -- Rules of Multiplication to Calculate Probability -- Special Rule of Multiplication -- General Rule of Multiplication -- Contingency Tables -- Tree Diagrams -- EXERCISES -- Bayes' Theorem -- EXERCISES -- Principles of Counting -- The Multiplication Formula -- The Permutation Formula -- The Combination Formula -- EXERCISES -- Chapter Summary -- Pronunciation Key -- Chapter Exercises -- Data Analytics -- 6 Discrete Probability Distributions -- Introduction -- What is a Probability Distribution? -- Random Variables -- Discrete Random Variable -- Continuous Random Variable -- The Mean, Variance, and Standard Deviation of a Discrete Probability Distribution -- Mean -- Variance and Standard Deviation -- EXERCISES -- Binomial Probability Distribution -- How Is a Binomial Probability Computed? -- Binomial Probability Tables -- EXERCISES -- Cumulative Binomial Probability Distributions -- EXERCISES -- Hypergeometric Probability Distribution. 
505 8 |a EXERCISES -- Poisson Probability Distribution -- EXERCISES -- Chapter Summary -- Chapter Exercises -- Data Analytics -- 7 Continuous Probability Distributions -- Introduction -- The Family of Uniform Probability Distributions -- EXERCISES -- The Family of Normal Probability Distributions -- The Standard Normal Probability Distribution -- Applications of the Standard Normal Distribution -- The Empirical Rule -- EXERCISES -- Finding Areas under the Normal Curve -- EXERCISES -- EXERCISES -- EXERCISES -- The Normal Approximation to the Binomial -- Continuity Correction Factor -- How to Apply the Correction Factor -- EXERCISES -- The Family of Exponential Distributions -- EXERCISES -- Chapter Summary -- Chapter Exercises -- Data Analytics -- Problems -- Cases -- Practice Test -- 8 Sampling Methods and the Central Limit Theorem -- Introduction -- Sampling Methods -- Reasons to Sample -- Simple Random Sampling -- Systematic Random Sampling -- Stratified Random Sampling -- Cluster Sampling -- EXERCISES -- Sampling "Error -- Sampling Distribution of the Sample Mean -- EXERCISES -- The Central Limit Theorem -- EXERCISES -- Using the Sampling Distribution of the Sample Mean -- EXERCISES -- Chapter Summary -- Pronunciation Key -- Chapter Exercises -- Data Analytics -- 9 Estimation and Confidence Intervals -- Introduction -- Point Estimate for a Population Mean -- Confidence Intervals for a Population Mean -- Population Standard Deviation, Known σ -- A Computer Simulation -- EXERCISES -- Population Standard Deviation, σ Unknown -- EXERCISES -- A Confidence Interval for a Population Proportion -- EXERCISES -- Choosing an Appropriate Sample Size -- Sample Size to Estimate a Population Mean -- Sample Size to Estimate a Population Proportion -- EXERCISES -- Finite-Population Correction Factor -- EXERCISES -- Chapter Summary -- Chapter Exercises -- Data Analytics. 
505 8 |a Problems -- Cases -- Practice Test -- 10 One-Sample Tests of Hypothesis -- Introduction -- What is Hypothesis Testing? -- Six-Step Procedure for Testing a Hypothesis -- Step 1: State the Null Hypothesis (H0) and the Alternate Hypothesis (H1) -- Step 2: Select a Level of Significance -- Step 3: Select the Test Statistic -- Step 4: Formulate the Decision Rule -- Step 5: Make a Decision -- Step 6: Interpret the Result -- One-Tailed and Two-Tailed Hypothesis Tests -- Hypothesis Testing for a Population Mean: Known Population Standard Deviation -- A Two-Tailed Test -- A One-Tailed Test -- p-Value in Hypothesis Testing -- EXERCISES -- Hypothesis Testing for a Population Mean: Population Standard Deviation Unknown -- EXERCISES -- A Statistical Software Solution -- EXERCISES -- Type II Error -- EXERCISES -- Chapter Summary -- Pronunciation Key -- Chapter Exercises -- Data Analytics -- 11 Two-Sample Tests of Hypothesis -- Introduction -- Two-Sample Tests of Hypothesis: Independent Samples -- EXERCISES -- Comparing Population Means with Unknown Population Standard Deviations -- Two-Sample Pooled Test -- EXERCISES -- Unequal Population Standard Deviations -- EXERCISES -- Two-Sample Tests of Hypothesis: Dependent Samples -- Comparing Dependent and Independent Samples -- EXERCISES -- Chapter Summary -- Pronunciation Key -- Chapter Exercises -- Data Analytics -- 12 Analysis of Variance -- Introduction -- Comparing Two Population Variances -- The F Distribution -- Testing a Hypothesis of Equal Population Variances -- EXERCISES -- ANOVA: Analysis of Variance -- ANOVA Assumptions -- The ANOVA Test -- EXERCISES -- Inferences about Pairs of Treatment Means -- EXERCISES -- Two-Way Analysis of Variance -- EXERCISES -- Two-Way ANOVA with Interaction -- Interaction Plots -- Testing for Interaction -- Hypothesis Tests for Interaction -- EXERCISES -- Chapter Summary. 
505 8 |a Pronunciation Key -- Chapter Exercises -- Data Analytics -- Problems -- Cases -- Practice Test -- 13 Correlation and Linear Regression -- Introduction -- What is Correlation Analysis? -- The Correlation Coefficient -- EXERCISES -- Testing the Significance of the Correlation Coefficient -- EXERCISES -- Regression Analysis -- Least Squares Principle -- Drawing the Regression Line -- EXERCISES -- Testing the Significance of the Slope -- EXERCISES -- Evaluating a Regression Equation's Ability to Predict -- The Standard Error of Estimate -- The Coefficient of Determination -- EXERCISES -- Relationships among the Correlation Coefficient, the Coefficient of Determination, and the Standard Error of Estimate -- EXERCISES -- Interval Estimates of Prediction -- Assumptions Underlying Linear Regression -- Constructing Confidence and Prediction Intervals -- EXERCISES -- Transforming Data -- EXERCISES -- Chapter Summary -- Pronunciation Key -- Chapter Exercises -- Data Analytics -- 14 Multiple Regression Analysis -- Introduction -- Multiple Regression Analysis -- EXERCISES -- Evaluating a Multiple Regression Equation -- The ANOVA Table -- Multiple Standard Error of Estimate -- Coefficient of Multiple Determination -- Adjusted Coefficient of Determination -- EXERCISES -- Inferences in Multiple Linear Regression -- Global Test: Testing the Multiple Regression Model -- Evaluating Individual Regression Coefficients -- EXERCISES -- Evaluating the Assumptions of Multiple Regression -- Linear Relationship -- Variation in Residuals Same for Large and Small y Values -- Distribution of Residuals -- Multicollinearity -- Independent Observations -- Qualitative Independent Variables -- Regression Models with Interaction -- Stepwise Regression -- EXERCISES -- Review of Multiple Regression -- Chapter Summary -- Pronunciation Key -- Chapter Exercises -- Data Analytics -- Problems. 
505 8 |a Cases. 
526 0 |a BA118 - Diploma In Office Management & Technology  |z Syllabus Programme 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2021. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
650 0 |a Social sciences-Statistical methods.. 
650 0 |a Economics-Statistical methods.. 
650 0 |a Commercial statistics. 
655 4 |a Electronic books. 
700 1 |a Marchal, William. 
700 1 |a Wathen, Samuel. 
776 0 8 |i Print version:  |a Lind, Douglas  |t ISE EBook Online Access for Statistical Techniques in Business and Economics  |d NY : McGraw-Hill US Higher Ed ISE,c2017 
797 2 |a ProQuest (Firm) 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=https://ebookcentral.proquest.com/lib/uitm-ebooks/detail.action?docID=5662634  |z View fulltext via EzAccess 
966 0 |a 2021  |b ProQuest Ebook Central  |c UiTM Library  |d Atirah Ruslan  |e Faculty of Business and Management  |f ProQuest