Nanohybrid and Nanoporous Materials for Aquatic Pollution Control.

Bibliographic Details
Main Author: Tang, Lin.
Other Authors: Deng, Yaocheng., Wang, Jingjing., Wang, Jiajia.
Format: eBook
Language:English
Published: San Diego : Elsevier, 2018.
Series:Micro and Nano Technologies Ser.
Subjects:
Online Access:View fulltext via EzAccess
LEADER 10424nam a22005413i 4500
001 EBC5558185
003 MiAaPQ
005 20201119074710.0
006 m o d |
007 cr cnu||||||||
008 201119s2018 xx o ||||0 eng d
020 |a 9780128141557  |q (electronic bk.) 
020 |z 9780128141540 
035 |a (MiAaPQ)EBC5558185 
035 |a (Au-PeEL)EBL5558185 
035 |a (OCoLC)1059414272 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a TA418.9.N35 .N366 2019 
082 0 |a 628.168 
100 1 |a Tang, Lin. 
245 1 0 |a Nanohybrid and Nanoporous Materials for Aquatic Pollution Control. 
264 1 |a San Diego :  |b Elsevier,  |c 2018. 
264 4 |c Ã2019. 
300 |a 1 online resource (324 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Micro and Nano Technologies Ser. 
505 0 |a Front Cover -- Nanohybrid and Nanoporous Materials for Aquatic Pollution Control -- Copyright Page -- Contents -- List of Contributors -- 1 Magnetic Nanohybrid Materials for Water-Pollutant Removal -- 1.1 Adsorption of Heavy Metals Using Magnetic Nanohybrid Materials -- 1.1.1 Preparation of Magnetic Nanohybrid Materials -- 1.1.2 Application of Magnetic Nanohybrid as Adsorbent -- 1.1.3 Factors That Influence Adsorption Effect of Magnetic Nanohybrid Adsorbent -- 1.1.4 Evaluation of the Magnetic Nanohybrid Adsorbent -- 1.2 Removal of Water Pollutants Based on Magnetic Nanohybrid Catalysts -- 1.2.1 Carbon-Based Magnetic Nanohybrid Adsorbent -- 1.2.2 Multimetals Based Magnetic Nanohybrid Catalyst -- 1.3 Future Perspectives and Expectations -- References -- 2 Mesoporous Carbon Based Composites for Removal of Recalcitrant Pollutants From Water -- 2.1 Pure Ordered Mesoporous Carbons -- 2.1.1 Adsorption of Recalcitrant Pollutants Using OMCs -- 2.1.2 Carbocatalytic Activation of Persulfate for Aqueous Pollutant Removal -- 2.2 Nonmetallic Modified Mesoporous Carbon-Based Composites -- 2.2.1 Surface Oxidized Ordered Mesoporous Carbons -- 2.2.2 N-, F-, B-, P-, or S-Doped OMCs -- 2.2.2.1 Application of N-, F-, B-, P-, or S-Doped OMCs for Adsorption of Pollutants -- 2.2.2.2 Application of N-, F-, B-, P-, or S-Doped OMCs in MFCs -- 2.2.3 Other Nonmetallic Functional Mesoporous Carbon for Adsorption -- 2.2.4 Oxidative Enzyme Immobilization on Ordered Mesoporous Carbons -- 2.3 Metallic Modified Mesoporous Carbon Based Composites -- 2.3.1 Magnetically Separable OMCs -- 2.3.2 Metallic Modified Mesoporous Carbon Based Catalysts -- 2.3.2.1 Ruthenium- and Ni-Incorporated OMCs for Conversion of Cellulose -- 2.3.2.2 Pd/Mesoporous Carbon Nitride for Removal of Bromate and Tetrabromobisphenol A (TBBPA) -- 2.3.2.3 Pt/Graphitic Mesoporous Carbon Electrocatalyst for ORR. 
505 8 |a 2.3.2.4 Metallic Particles Loaded on Mesoporous Carbon as Photocatalyst -- 2.4 Future Perspectives and Expectations -- References -- 3 Mesoporous Carbon-Based Composites for Adsorption of Heavy Metals -- 3.1 Common Synthetic Methods for Mesoporous Carbon -- 3.2 Nonmetal-Functionalized Mesoporous Carbon -- 3.2.1 Chemical Oxidation Treated Mesoporous Carbon -- 3.2.2 Amino-Functionalized Mesoporous Carbon -- 3.2.3 Sulfur-Functionalized Mesoporous Carbon -- 3.2.4 Nitrogen-Functionalized Mesoporous Carbon -- 3.2.5 Organic Matter-Functionalized Mesoporous Carbon -- 3.3 Metal-Modified Mesoporous Carbon Nanocomposite -- 3.3.1 Magnetic Mesoporous Carbon -- 3.3.2 Multifunctionalized Magnetic Mesoporous Carbon -- 3.3.2.1 Polyacrylic Acid-Modified Magnetic Mesoporous Carbon for the Removal of Cd(II) -- 3.3.2.2 Nitrogen-Functionalized Magnetic Ordered Mesoporous Carbon for the Simultaneous Removal of Lead and Phenols -- 3.4 Future Perspectives and Expectations -- References -- 4 Mesoporous Carbon-Based Enzyme Biocatalyst for Aquatic Recalcitrant Pollutant Treatment -- 4.1 Introduction -- 4.2 Strategies for the Mesoporous Carbon-Based Enzyme Biocatalyst -- 4.2.1 Physical Adsorption -- 4.2.2 Covalent Cross-linking -- 4.3 Impact Factors on the Activity of the Mesoporous Carbon-Based Enzyme Biocatalyst -- 4.3.1 Enzyme Concentration -- 4.3.2 pH -- 4.3.3 Incubation Time -- 4.3.4 Temperature -- 4.4 Characterization of the Mesoporous Carbon-Based Enzyme Biocatalyst -- 4.5 Applications of the Mesoporous Carbon-Based Oxidoreducatases Enzyme Biocatalyst for Organic Pollutant Degradation -- 4.6 Applications of the Mesoporous Carbon-Based Hydrolases Enzyme Biocatalyst for Pathogen Removal -- 4.7 Prospects of the Mesoporous Carbon-Based Enzyme Biocatalyst in Environmental Pollution Control -- References -- 5 Nanohybrid Photocatalysts for Heavy Metal Pollutant Control. 
505 8 |a 5.1 Introduction -- 5.2 Nonmetal Based Nanohybrid Photocatalysts for Heavy Metal Pollutant Control -- 5.2.1 Graphitic Carbon Nitride Based Nanohybrid Materials -- 5.2.2 Other Materials -- 5.3 Metal-Based Nanohybrid Photocatalysts for Heavy Metal Pollutant Control -- 5.3.1 Single Component Photocatalysts-Based Reaction System -- 5.3.2 Binary Hybrid Photocatalysts Based Reaction System -- 5.3.3 Ternary and Complex Hybrid Photocatalysts Based Reaction System -- 5.4 Rare Earth Metals Based Nanohybrid Photocatalysts for Heavy Metal Pollutant Control -- 5.5 New Type Photocatalysts Based Nanohybrid Photocatalysts for Heavy Metal Pollutant Control -- 5.6 Conclusions and Future Perspectives -- References -- 6 Nanohybrid Photocatalysts for Recalcitrant Organic Pollutant Degradation -- 6.1 Photocatalytic Mechanism -- 6.2 Photocatalyst -- 6.2.1 Common Photocatalysts -- 6.2.2 Ultraviolet Light Responsive Photocatalysts -- 6.2.3 Visible Light Responsive Photocatalysts -- 6.2.3.1 Modified TiO2 -- 6.2.3.2 Metal Deposition -- 6.2.3.3 Dye Sensitization -- 6.2.3.4 WO3 -- 6.2.3.5 C3N4 -- 6.2.3.6 Bismuth-Based Photocatalyst -- 6.3 Effect of Operational Parameters -- 6.3.1 Nature of the Photocatalyst -- 6.3.2 Light Intensity -- 6.3.3 Nature and Concentration of the Organic Pollutants -- 6.3.4 Photocatalyst Concentration -- 6.3.5 pH -- 6.3.6 Temperature -- 6.4 Photocatalytic Degradation of Organic Pollutants From Water -- 6.4.1 Photocatalytic Degradation of Organic Dyes -- 6.4.2 Photocatalytic Degradation of Pesticides -- 6.4.3 Photocatalytic Degradation of Pharmaceutical Compounds -- 6.5 Summary and Prospect -- References -- 7 Iron-Based Nanohybrids for Aquatic Recalcitrant Pollutant Treatment -- 7.1 Introduction of Iron-Based Nanohybrids -- 7.1.1 Zero-Valent Iron (ZVI) Based Nanohybrids -- 7.1.1.1 Supported ZVI Nanohybrids -- 7.1.1.2 Stabilized ZVI Nanohybrids. 
505 8 |a 7.1.1.3 Bimetallic ZVI Nanohybrids -- 7.1.1.4 Metalloid Modified ZVI Nanohybrids -- 7.1.2 Magnetic Nanohybrids -- 7.1.2.1 Supported Magnetic Nanohybrids -- 7.1.2.2 Core-Shell Fe3O4-Based Nanohybrids -- 7.2 Iron-Based Nanohybrids for Aquatic Organic Pollutants Degradation -- 7.2.1 Adsorption of Aquatic Organic Pollutants by Iron-Based Nanohybrids -- 7.2.2 Reduction of Aquatic Organic Pollutants by Iron-Based Nanohybrids -- 7.2.3 Oxidation of Aquatic Organic Pollutants by Iron-Based Nanohybrids -- 7.2.4 Synergetic Degradation of Aquatic Organic Pollutants by Iron-Based Nanohybrids -- 7.3 Iron-Based Nanohybrids for Aquatic Heavy Metals Removal -- 7.3.1 Adsorption of Heavy Metals by Iron-Based Nanohybrids -- 7.3.2 Synergetic Effects of Aquatic Heavy Metals by Iron-Based Nanohybrids -- 7.4 Iron-Based Nanohybrids for Aquatic Organics and Heavy Metals Simultaneous Removal -- 7.5 Environmental Risks of Iron-Based Nanohybrids -- 7.5.1 ZVI-Based Nanohybrids Cytotoxicity -- 7.5.2 Fate of ZVI-Based Nanohybrids in the Water Environment -- 7.6 Applications of Iron-Based Nanohybrids for Aquatic Recalcitrant Pollutant Treatment -- 7.7 Challenges and Future Perspectives of Iron-Based Nanohybrids for Aquatic Recalcitrant Pollutant Treatment -- References -- 8 Nanohybrid Materials Based Biosensors for Heavy Metal Detection -- 8.1 Introduction -- 8.2 Nanohybrid Materials Based DNA Molecules Electrochemical Biosensors for Heavy Metal Ions -- 8.2.1 Mechanism of DNA Molecules-Based Electrochemical Biosensor for Heavy Metal Ions -- 8.2.2 Graphene Nanohybrid Materials Based Electrochemical DNA Biosensors for Attomolar Mercury Detection -- 8.2.3 Ordered Mesoporous Nanohybrid Materials Based Electrochemical DNA Biosensors -- 8.2.4 Multiwalled Carbon Nanotubes Nanohybrid Materials Based Electrochemical DNA Biosensors. 
505 8 |a 8.3 Nanohybrid Materials Based DNAzyme Biosensors for Heavy Metal Ions -- 8.3.1 Mechanism of DNAzyme-Based Biosensor for Heavy Metal Ions -- 8.3.2 Ordered Mesoporous Nanohybrid Materials Based Electrochemical DNA Biosensors -- 8.4 Conclusion and Future Perspectives -- References -- 9 Nanoporous Materials Based Sensors for Pollutant Detection -- 9.1 Nanoporous Metals Based Materials Sensors -- 9.1.1 Nanoporous Metal Based Electrochemical Sensors -- 9.1.2 Nanoporous Metal Based Optical Sensors -- 9.2 Nanoporous Metal Oxide Based Materials Sensors -- 9.3 Mesoporous Carbon Based Materials Sensors -- 9.4 Conclusions and Future Perspectives -- References -- 10 Summary Remarks and Future Perspective -- 10.1 Mesoporous Carbon Based Materials for Pollutant Removal -- 10.2 Nanohybrid Materials for Sensors -- 10.3 Nanohybrid Materials for Photocatalysis -- 10.4 Iron-Based Nanohybrid Materials -- Index -- Back Cover. 
526 0 |a Flood Control Research Center (FCRC) Collection  |z Reference Materials 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
650 0 |a Nanostructured materials.. 
650 0 |a Water-Pollution. 
655 4 |a Electronic books. 
700 1 |a Deng, Yaocheng. 
700 1 |a Wang, Jingjing. 
700 1 |a Wang, Jiajia. 
720 1 |a aFlood Control Research Center (FCRC) Collection 
720 1 |a Noredayu Rosli  |e Requestor 
776 0 8 |i Print version:  |a Tang, Lin  |t Nanohybrid and Nanoporous Materials for Aquatic Pollution Control  |d San Diego : Elsevier,c2018  |z 9780128141540 
797 2 |a ProQuest (Firm) 
830 0 |a Micro and Nano Technologies Ser. 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=https://ebookcentral.proquest.com/lib/uitm-ebooks/detail.action?docID=5558185  |z View fulltext via EzAccess