|
|
|
|
LEADER |
10424nam a22005413i 4500 |
001 |
EBC5558185 |
003 |
MiAaPQ |
005 |
20201119074710.0 |
006 |
m o d | |
007 |
cr cnu|||||||| |
008 |
201119s2018 xx o ||||0 eng d |
020 |
|
|
|a 9780128141557
|q (electronic bk.)
|
020 |
|
|
|z 9780128141540
|
035 |
|
|
|a (MiAaPQ)EBC5558185
|
035 |
|
|
|a (Au-PeEL)EBL5558185
|
035 |
|
|
|a (OCoLC)1059414272
|
040 |
|
|
|a MiAaPQ
|b eng
|e rda
|e pn
|c MiAaPQ
|d MiAaPQ
|
050 |
|
4 |
|a TA418.9.N35 .N366 2019
|
082 |
0 |
|
|a 628.168
|
100 |
1 |
|
|a Tang, Lin.
|
245 |
1 |
0 |
|a Nanohybrid and Nanoporous Materials for Aquatic Pollution Control.
|
264 |
|
1 |
|a San Diego :
|b Elsevier,
|c 2018.
|
264 |
|
4 |
|c Ã2019.
|
300 |
|
|
|a 1 online resource (324 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Micro and Nano Technologies Ser.
|
505 |
0 |
|
|a Front Cover -- Nanohybrid and Nanoporous Materials for Aquatic Pollution Control -- Copyright Page -- Contents -- List of Contributors -- 1 Magnetic Nanohybrid Materials for Water-Pollutant Removal -- 1.1 Adsorption of Heavy Metals Using Magnetic Nanohybrid Materials -- 1.1.1 Preparation of Magnetic Nanohybrid Materials -- 1.1.2 Application of Magnetic Nanohybrid as Adsorbent -- 1.1.3 Factors That Influence Adsorption Effect of Magnetic Nanohybrid Adsorbent -- 1.1.4 Evaluation of the Magnetic Nanohybrid Adsorbent -- 1.2 Removal of Water Pollutants Based on Magnetic Nanohybrid Catalysts -- 1.2.1 Carbon-Based Magnetic Nanohybrid Adsorbent -- 1.2.2 Multimetals Based Magnetic Nanohybrid Catalyst -- 1.3 Future Perspectives and Expectations -- References -- 2 Mesoporous Carbon Based Composites for Removal of Recalcitrant Pollutants From Water -- 2.1 Pure Ordered Mesoporous Carbons -- 2.1.1 Adsorption of Recalcitrant Pollutants Using OMCs -- 2.1.2 Carbocatalytic Activation of Persulfate for Aqueous Pollutant Removal -- 2.2 Nonmetallic Modified Mesoporous Carbon-Based Composites -- 2.2.1 Surface Oxidized Ordered Mesoporous Carbons -- 2.2.2 N-, F-, B-, P-, or S-Doped OMCs -- 2.2.2.1 Application of N-, F-, B-, P-, or S-Doped OMCs for Adsorption of Pollutants -- 2.2.2.2 Application of N-, F-, B-, P-, or S-Doped OMCs in MFCs -- 2.2.3 Other Nonmetallic Functional Mesoporous Carbon for Adsorption -- 2.2.4 Oxidative Enzyme Immobilization on Ordered Mesoporous Carbons -- 2.3 Metallic Modified Mesoporous Carbon Based Composites -- 2.3.1 Magnetically Separable OMCs -- 2.3.2 Metallic Modified Mesoporous Carbon Based Catalysts -- 2.3.2.1 Ruthenium- and Ni-Incorporated OMCs for Conversion of Cellulose -- 2.3.2.2 Pd/Mesoporous Carbon Nitride for Removal of Bromate and Tetrabromobisphenol A (TBBPA) -- 2.3.2.3 Pt/Graphitic Mesoporous Carbon Electrocatalyst for ORR.
|
505 |
8 |
|
|a 2.3.2.4 Metallic Particles Loaded on Mesoporous Carbon as Photocatalyst -- 2.4 Future Perspectives and Expectations -- References -- 3 Mesoporous Carbon-Based Composites for Adsorption of Heavy Metals -- 3.1 Common Synthetic Methods for Mesoporous Carbon -- 3.2 Nonmetal-Functionalized Mesoporous Carbon -- 3.2.1 Chemical Oxidation Treated Mesoporous Carbon -- 3.2.2 Amino-Functionalized Mesoporous Carbon -- 3.2.3 Sulfur-Functionalized Mesoporous Carbon -- 3.2.4 Nitrogen-Functionalized Mesoporous Carbon -- 3.2.5 Organic Matter-Functionalized Mesoporous Carbon -- 3.3 Metal-Modified Mesoporous Carbon Nanocomposite -- 3.3.1 Magnetic Mesoporous Carbon -- 3.3.2 Multifunctionalized Magnetic Mesoporous Carbon -- 3.3.2.1 Polyacrylic Acid-Modified Magnetic Mesoporous Carbon for the Removal of Cd(II) -- 3.3.2.2 Nitrogen-Functionalized Magnetic Ordered Mesoporous Carbon for the Simultaneous Removal of Lead and Phenols -- 3.4 Future Perspectives and Expectations -- References -- 4 Mesoporous Carbon-Based Enzyme Biocatalyst for Aquatic Recalcitrant Pollutant Treatment -- 4.1 Introduction -- 4.2 Strategies for the Mesoporous Carbon-Based Enzyme Biocatalyst -- 4.2.1 Physical Adsorption -- 4.2.2 Covalent Cross-linking -- 4.3 Impact Factors on the Activity of the Mesoporous Carbon-Based Enzyme Biocatalyst -- 4.3.1 Enzyme Concentration -- 4.3.2 pH -- 4.3.3 Incubation Time -- 4.3.4 Temperature -- 4.4 Characterization of the Mesoporous Carbon-Based Enzyme Biocatalyst -- 4.5 Applications of the Mesoporous Carbon-Based Oxidoreducatases Enzyme Biocatalyst for Organic Pollutant Degradation -- 4.6 Applications of the Mesoporous Carbon-Based Hydrolases Enzyme Biocatalyst for Pathogen Removal -- 4.7 Prospects of the Mesoporous Carbon-Based Enzyme Biocatalyst in Environmental Pollution Control -- References -- 5 Nanohybrid Photocatalysts for Heavy Metal Pollutant Control.
|
505 |
8 |
|
|a 5.1 Introduction -- 5.2 Nonmetal Based Nanohybrid Photocatalysts for Heavy Metal Pollutant Control -- 5.2.1 Graphitic Carbon Nitride Based Nanohybrid Materials -- 5.2.2 Other Materials -- 5.3 Metal-Based Nanohybrid Photocatalysts for Heavy Metal Pollutant Control -- 5.3.1 Single Component Photocatalysts-Based Reaction System -- 5.3.2 Binary Hybrid Photocatalysts Based Reaction System -- 5.3.3 Ternary and Complex Hybrid Photocatalysts Based Reaction System -- 5.4 Rare Earth Metals Based Nanohybrid Photocatalysts for Heavy Metal Pollutant Control -- 5.5 New Type Photocatalysts Based Nanohybrid Photocatalysts for Heavy Metal Pollutant Control -- 5.6 Conclusions and Future Perspectives -- References -- 6 Nanohybrid Photocatalysts for Recalcitrant Organic Pollutant Degradation -- 6.1 Photocatalytic Mechanism -- 6.2 Photocatalyst -- 6.2.1 Common Photocatalysts -- 6.2.2 Ultraviolet Light Responsive Photocatalysts -- 6.2.3 Visible Light Responsive Photocatalysts -- 6.2.3.1 Modified TiO2 -- 6.2.3.2 Metal Deposition -- 6.2.3.3 Dye Sensitization -- 6.2.3.4 WO3 -- 6.2.3.5 C3N4 -- 6.2.3.6 Bismuth-Based Photocatalyst -- 6.3 Effect of Operational Parameters -- 6.3.1 Nature of the Photocatalyst -- 6.3.2 Light Intensity -- 6.3.3 Nature and Concentration of the Organic Pollutants -- 6.3.4 Photocatalyst Concentration -- 6.3.5 pH -- 6.3.6 Temperature -- 6.4 Photocatalytic Degradation of Organic Pollutants From Water -- 6.4.1 Photocatalytic Degradation of Organic Dyes -- 6.4.2 Photocatalytic Degradation of Pesticides -- 6.4.3 Photocatalytic Degradation of Pharmaceutical Compounds -- 6.5 Summary and Prospect -- References -- 7 Iron-Based Nanohybrids for Aquatic Recalcitrant Pollutant Treatment -- 7.1 Introduction of Iron-Based Nanohybrids -- 7.1.1 Zero-Valent Iron (ZVI) Based Nanohybrids -- 7.1.1.1 Supported ZVI Nanohybrids -- 7.1.1.2 Stabilized ZVI Nanohybrids.
|
505 |
8 |
|
|a 7.1.1.3 Bimetallic ZVI Nanohybrids -- 7.1.1.4 Metalloid Modified ZVI Nanohybrids -- 7.1.2 Magnetic Nanohybrids -- 7.1.2.1 Supported Magnetic Nanohybrids -- 7.1.2.2 Core-Shell Fe3O4-Based Nanohybrids -- 7.2 Iron-Based Nanohybrids for Aquatic Organic Pollutants Degradation -- 7.2.1 Adsorption of Aquatic Organic Pollutants by Iron-Based Nanohybrids -- 7.2.2 Reduction of Aquatic Organic Pollutants by Iron-Based Nanohybrids -- 7.2.3 Oxidation of Aquatic Organic Pollutants by Iron-Based Nanohybrids -- 7.2.4 Synergetic Degradation of Aquatic Organic Pollutants by Iron-Based Nanohybrids -- 7.3 Iron-Based Nanohybrids for Aquatic Heavy Metals Removal -- 7.3.1 Adsorption of Heavy Metals by Iron-Based Nanohybrids -- 7.3.2 Synergetic Effects of Aquatic Heavy Metals by Iron-Based Nanohybrids -- 7.4 Iron-Based Nanohybrids for Aquatic Organics and Heavy Metals Simultaneous Removal -- 7.5 Environmental Risks of Iron-Based Nanohybrids -- 7.5.1 ZVI-Based Nanohybrids Cytotoxicity -- 7.5.2 Fate of ZVI-Based Nanohybrids in the Water Environment -- 7.6 Applications of Iron-Based Nanohybrids for Aquatic Recalcitrant Pollutant Treatment -- 7.7 Challenges and Future Perspectives of Iron-Based Nanohybrids for Aquatic Recalcitrant Pollutant Treatment -- References -- 8 Nanohybrid Materials Based Biosensors for Heavy Metal Detection -- 8.1 Introduction -- 8.2 Nanohybrid Materials Based DNA Molecules Electrochemical Biosensors for Heavy Metal Ions -- 8.2.1 Mechanism of DNA Molecules-Based Electrochemical Biosensor for Heavy Metal Ions -- 8.2.2 Graphene Nanohybrid Materials Based Electrochemical DNA Biosensors for Attomolar Mercury Detection -- 8.2.3 Ordered Mesoporous Nanohybrid Materials Based Electrochemical DNA Biosensors -- 8.2.4 Multiwalled Carbon Nanotubes Nanohybrid Materials Based Electrochemical DNA Biosensors.
|
505 |
8 |
|
|a 8.3 Nanohybrid Materials Based DNAzyme Biosensors for Heavy Metal Ions -- 8.3.1 Mechanism of DNAzyme-Based Biosensor for Heavy Metal Ions -- 8.3.2 Ordered Mesoporous Nanohybrid Materials Based Electrochemical DNA Biosensors -- 8.4 Conclusion and Future Perspectives -- References -- 9 Nanoporous Materials Based Sensors for Pollutant Detection -- 9.1 Nanoporous Metals Based Materials Sensors -- 9.1.1 Nanoporous Metal Based Electrochemical Sensors -- 9.1.2 Nanoporous Metal Based Optical Sensors -- 9.2 Nanoporous Metal Oxide Based Materials Sensors -- 9.3 Mesoporous Carbon Based Materials Sensors -- 9.4 Conclusions and Future Perspectives -- References -- 10 Summary Remarks and Future Perspective -- 10.1 Mesoporous Carbon Based Materials for Pollutant Removal -- 10.2 Nanohybrid Materials for Sensors -- 10.3 Nanohybrid Materials for Photocatalysis -- 10.4 Iron-Based Nanohybrid Materials -- Index -- Back Cover.
|
526 |
0 |
|
|a Flood Control Research Center (FCRC) Collection
|z Reference Materials
|
588 |
|
|
|a Description based on publisher supplied metadata and other sources.
|
590 |
|
|
|a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
|
650 |
|
0 |
|a Nanostructured materials..
|
650 |
|
0 |
|a Water-Pollution.
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Deng, Yaocheng.
|
700 |
1 |
|
|a Wang, Jingjing.
|
700 |
1 |
|
|a Wang, Jiajia.
|
720 |
1 |
|
|a aFlood Control Research Center (FCRC) Collection
|
720 |
1 |
|
|a Noredayu Rosli
|e Requestor
|
776 |
0 |
8 |
|i Print version:
|a Tang, Lin
|t Nanohybrid and Nanoporous Materials for Aquatic Pollution Control
|d San Diego : Elsevier,c2018
|z 9780128141540
|
797 |
2 |
|
|a ProQuest (Firm)
|
830 |
|
0 |
|a Micro and Nano Technologies Ser.
|
856 |
4 |
0 |
|u https://ezaccess.library.uitm.edu.my/login?url=https://ebookcentral.proquest.com/lib/uitm-ebooks/detail.action?docID=5558185
|z View fulltext via EzAccess
|