Introduction to the Perturbation Theory of Hamiltonian Systems

This book presents the basic methods of regular perturbation theory of Hamiltonian systems, including KAM-theory, splitting of asymptotic manifolds, the separatrix map, averaging, anti-integrable limit, etc. in a readable way. Although concise, it discusses all main aspects of the basic modern theor...

Full description

Bibliographic Details
Main Authors: Treschev, Dmitry. (Author), Zubelevich, Oleg. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Springer Monographs in Mathematics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-03028-4
LEADER 02254nam a22005175i 4500
001 9981
003 DE-He213
005 20130725193239.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 # # |a 9783642030284  |9 978-3-642-03028-4 
024 7 # |a 10.1007/978-3-642-03028-4  |2 doi 
050 # 4 |a QA313 
072 # 7 |a PBWR  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 # |a Treschev, Dmitry.  |e author. 
245 1 0 |a Introduction to the Perturbation Theory of Hamiltonian Systems  |c by Dmitry Treschev, Oleg Zubelevich.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a X, 211p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Monographs in Mathematics,  |x 1439-7382 
520 # # |a This book presents the basic methods of regular perturbation theory of Hamiltonian systems, including KAM-theory, splitting of asymptotic manifolds, the separatrix map, averaging, anti-integrable limit, etc. in a readable way. Although concise, it discusses all main aspects of the basic modern theory of perturbed Hamiltonian systems and most results are given with complete proofs. It will be a valuable reference for Hamiltonian systems, and of special interest to researchers and graduate students of the KAM community. 
650 # 0 |a Mathematics. 
650 # 0 |a Global analysis (Mathematics). 
650 # 0 |a Differentiable dynamical systems. 
650 # 0 |a Topology. 
650 # 0 |a Mechanics. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Analysis. 
650 2 4 |a Topology. 
650 2 4 |a Mechanics. 
700 1 # |a Zubelevich, Oleg.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642030277 
830 # 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-03028-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)