Scientific Data Mining and Knowledge Discovery Principles and Foundations /

With the evolution in data storage, large databases have stimulated researchers from many areas, especially machine learning and statistics, to adopt and develop new techniques for data analysis in different fields of science. In particular, there have been notable successes in the use of statistica...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Gaber, Mohamed Medhat. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-02788-8
LEADER 04031nam a22005295i 4500
001 9955
003 DE-He213
005 20130725192908.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 # # |a 9783642027888  |9 978-3-642-02788-8 
024 7 # |a 10.1007/978-3-642-02788-8  |2 doi 
050 # 4 |a QA76.9.D343 
072 # 7 |a UNF  |2 bicssc 
072 # 7 |a UYQE  |2 bicssc 
072 # 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 # |a Gaber, Mohamed Medhat.  |e editor. 
245 1 0 |a Scientific Data Mining and Knowledge Discovery  |b Principles and Foundations /  |c edited by Mohamed Medhat Gaber.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a X, 400p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a 1) Introduction -- Part I: Background -- 2) Machine Learning - 3) Statistical Inference - 4) The Philosophy of Science and Its Relation to Machine Learning - 5) Concept Formation in Scientific Knwoledge Discovery from a Constructivist View - 6) Knowledge Representation and Ontologies -- Part II: Computational Science -- 7) Spatial Techniques - 8) Computational Chemistry - 9) String Mining in Bioinformatics -- Part III: Data Mining and Knowledge Discovery -- 10) Knowledge Discovery and Reasoning in Geospatial Applications - 11) Data Mining and Discovery of Chemical Knowledge - 12) Data Mining and Discovery of Astronomical Knowledge -- Part IV: Future Trends -- 14) Onboard Data Mining - 15) Data Streams: An Overview and Scientific Applications -- References, Index. 
520 # # |a With the evolution in data storage, large databases have stimulated researchers from many areas, especially machine learning and statistics, to adopt and develop new techniques for data analysis in different fields of science. In particular, there have been notable successes in the use of statistical, computational, and machine learning techniques to discover scientific knowledge in the fields of biology, chemistry, physics, and astronomy. With the recent advances in ontologies and knowledge representation, automated scientific discovery (ASD) has further, great prospects in the future. The contributions in this book provide the reader with a complete view of the different tools used in the analysis of data for scientific discovery. Gaber has organized the presentation into four parts: Part I provides the reader with the necessary background in the disciplines on which scientific data mining and knowledge discovery are based. Part II details applications of computational methods used in geospatial, chemical, and bioinformatics applications. Part III is about data mining applications in geosciences, chemistry, and physics. Finally, in Part IV, future trends and directions for research are explained. The book serves as a starting point for students and researchers interested in this multidisciplinary field. It offers both an overview of the state of the art and lists areas and open issues for future research and development. 
650 # 0 |a Computer science. 
650 # 0 |a Chemistry. 
650 # 0 |a Mathematical geography. 
650 # 0 |a Data mining. 
650 # 0 |a Artificial intelligence. 
650 # 0 |a Optical pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Computer Applications in Chemistry. 
650 2 4 |a Computer Applications in Earth Sciences. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642027871 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-02788-8 
912 # # |a ZDB-2-SCS 
950 # # |a Computer Science (Springer-11645)