Automating the Design of Data Mining Algorithms An Evolutionary Computation Approach /

Traditionally, evolutionary computing techniques have been applied in the area of data mining either to optimize the parameters of data mining algorithms or to discover knowledge or patterns in the data, i.e., to directly solve the target data mining problem. This book proposes a different goal for...

Full description

Bibliographic Details
Main Authors: Pappa, Gisele L. (Author), Freitas, Alex. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Natural Computing Series,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-02541-9
LEADER 03344nam a22004815i 4500
001 9939
003 DE-He213
005 20130725193511.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 # # |a 9783642025419  |9 978-3-642-02541-9 
024 7 # |a 10.1007/978-3-642-02541-9  |2 doi 
050 # 4 |a QA76.9.D343 
072 # 7 |a UNF  |2 bicssc 
072 # 7 |a UYQE  |2 bicssc 
072 # 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 # |a Pappa, Gisele L.  |e author. 
245 1 0 |a Automating the Design of Data Mining Algorithms  |b An Evolutionary Computation Approach /  |c by Gisele L. Pappa, Alex Freitas.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a XIII, 187p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Natural Computing Series,  |x 1619-7127 
505 0 # |a Introduction -- Data Mining -- Evolutionary Algorithms -- Evolutionary Algorithms for Automating the Parameter Setting and the Partial Design of Data Mining Algorithms -- A New Grammar-based Genetic Programming System for Automating the Design of Full Rule Induction Algorithms -- Computational Results on the Automatic Design of Full Induction Algorithms -- Conclusions. 
520 # # |a Traditionally, evolutionary computing techniques have been applied in the area of data mining either to optimize the parameters of data mining algorithms or to discover knowledge or patterns in the data, i.e., to directly solve the target data mining problem. This book proposes a different goal for evolutionary algorithms in data mining: to automate the design of a data mining algorithm, rather than just optimize its parameters. The authors first offer introductory overviews on data mining, focusing on rule induction methods, and on evolutionary algorithms, focusing on genetic programming. They then examine the conventional use of evolutionary algorithms to discover classification rules or related types of knowledge structures in the data, before moving to the more ambitious objective of their research, the design of a new genetic programming system for automating the design of full rule induction algorithms. They analyze computational results from their automatically designed algorithms, which show that the machine-designed rule induction algorithms are competitive when compared with state-of-the-art human-designed algorithms. Finally the authors examine future research directions. This book will be useful for researchers and practitioners in the areas of data mining and evolutionary computation. 
650 # 0 |a Computer science. 
650 # 0 |a Data mining. 
650 # 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 # |a Freitas, Alex.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642025402 
830 # 0 |a Natural Computing Series,  |x 1619-7127 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-02541-9 
912 # # |a ZDB-2-SCS 
950 # # |a Computer Science (Springer-11645)