Experimental Methods for the Analysis of Optimization Algorithms

In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, comp...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Bartz-Beielstein, Thomas. (Editor), Chiarandini, Marco. (Editor), Paquete, Lus̕. (Editor), Preuss, Mike. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-02538-9
LEADER 04489nam a22005415i 4500
001 9938
003 DE-He213
005 20130725202655.0
007 cr nn 008mamaa
008 101109s2010 gw | s |||| 0|eng d
020 # # |a 9783642025389  |9 978-3-642-02538-9 
024 7 # |a 10.1007/978-3-642-02538-9  |2 doi 
050 # 4 |a QA276-280 
072 # 7 |a UYAM  |2 bicssc 
072 # 7 |a UFM  |2 bicssc 
072 # 7 |a COM077000  |2 bisacsh 
082 0 4 |a 005.55  |2 23 
100 1 # |a Bartz-Beielstein, Thomas.  |e editor. 
245 1 0 |a Experimental Methods for the Analysis of Optimization Algorithms  |c edited by Thomas Bartz-Beielstein, Marco Chiarandini, Lus̕ Paquete, Mike Preuss.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a XXII, 457p. 93 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Introduction -- Concepts and Practice of Algorithm Engineering -- Generating Experimental Data for Computational Testing in Scheduling Problems -- On the Performance Testing of Combinatorial Optimization Algorithms: The Scientific Method -- Algorithm Survival Analysis -- On Applications of Extreme Value Theory in Optimization -- F-Race and Further Enhancements -- Comparing the Performance of Evolutionary Algorithms with Multiple Hypothesis Testing -- Mixed Models for the Analysis of Local Search Components -- Sequential Experiment Designs for Screening and Tuning Parameters of Stochastic Heuristics -- Sequential Parameter Optimization (SPO) and the Role of Tuning in Experimental Analysis -- An Overview of the Design and Analysis of Simulation Experiments for Sensitivity Analysis -- The Attainment-Function Approach to Stochastic Multiobjective Optimizer Assessment and Comparison -- Experimental Analysis of Stochastic Local Search Components for Multiobjective Problems -- An Introduction to Inferential Statistics. 
520 # # |a In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different scenarios of experimental analysis. The first part overviews the main issues in the experimental analysis of algorithms, and discusses the experimental cycle of algorithm development; the second part treats the characterization by means of statistical distributions of algorithm performance in terms of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies. This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment of optimization algorithms and, consequently, their design. 
650 # 0 |a Computer science. 
650 # 0 |a Algorithms. 
650 # 0 |a Operations research. 
650 # 0 |a Physics. 
650 # 0 |a Engineering. 
650 1 4 |a Computer Science. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Operations Research, Mathematical Programming. 
650 2 4 |a Algorithms. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Complexity. 
700 1 # |a Chiarandini, Marco.  |e editor. 
700 1 # |a Paquete, Lus̕.  |e editor. 
700 1 # |a Preuss, Mike.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642025372 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-02538-9 
912 # # |a ZDB-2-SCS 
950 # # |a Computer Science (Springer-11645)