The LLL Algorithm Survey and Applications /

The LLL algorithm is a polynomial-time lattice reduction algorithm, named after its inventors, Arjen Lenstra, Hendrik Lenstra and Ls̀zl ̤Lovs̀z. The algorithm has revolutionized computational aspects of the geometry of numbers since its introduction in 1982, leading to breakthroughs in fields as div...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Nguyen, Phong Q. (Editor), Vallě, Brigitte. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Information Security and Cryptography,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-02295-1
LEADER 03865nam a22005775i 4500
001 9922
003 DE-He213
005 20130725194027.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 # # |a 9783642022951  |9 978-3-642-02295-1 
024 7 # |a 10.1007/978-3-642-02295-1  |2 doi 
050 # 4 |a QA76.9.D35 
072 # 7 |a UMB  |2 bicssc 
072 # 7 |a URY  |2 bicssc 
072 # 7 |a COM031000  |2 bisacsh 
082 0 4 |a 005.74  |2 23 
100 1 # |a Nguyen, Phong Q.  |e editor. 
245 1 4 |a The LLL Algorithm  |b Survey and Applications /  |c edited by Phong Q. Nguyen, Brigitte Vallě.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a XIV, 496 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Information Security and Cryptography,  |x 1619-7100 
505 0 # |a A Tale of Two Papers -- Polynomial Factorization and Lattices in the Very Early 1980s -- Floating-Point LLL: Theoretical and Practical Aspects -- Progress on LLL and Lattice Reduction -- Probabilistic Analyses of Lattice Reduction Algorithms -- LLL: A Tool for Effective Diophantine Approximation -- Selected Applications of LLL in Number Theory -- The van Hoeij Algorithm to Factor Polynomials -- The LLL-Algorithm and Integer Programming -- The Geometry of Provable Security: Some Proofs of Security in Which Lattices Make a Surprise Appearance -- Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign -- Using LLL-Reduction for Solving RSA and Factorization Problems: A Survey -- Lattice-Based Cryptanalysis -- Inapproximability Results for Computational Problems on Lattices -- On the Complexity of Lattice Problems with Polynomial Approximation Factors -- Cryptographic Functions from Worst-Case Complexity Assumptions. 
520 # # |a The LLL algorithm is a polynomial-time lattice reduction algorithm, named after its inventors, Arjen Lenstra, Hendrik Lenstra and Ls̀zl ̤Lovs̀z. The algorithm has revolutionized computational aspects of the geometry of numbers since its introduction in 1982, leading to breakthroughs in fields as diverse as computer algebra, cryptology and algorithmic number theory. This book consists of 15 survey chapters on computational aspects of Euclidean lattices and their main applications. Topics covered include polynomial factorization, lattice reduction algorithms, applications in number theory, integer programming, provable security, lattice-based cryptography and complexity. The authors include many detailed motivations, explanations and examples, and the contributions are largely self-contained. The book will be of value to a wide range of researchers and graduate students working in related fields of theoretical computer science and mathematics. 
650 # 0 |a Computer science. 
650 # 0 |a Data structures (Computer science). 
650 # 0 |a Computer software. 
650 # 0 |a Computational complexity. 
650 # 0 |a Algorithms. 
650 # 0 |a Number theory. 
650 # 0 |a Mathematical optimization. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Structures, Cryptology and Information Theory. 
650 2 4 |a Algorithms. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Number Theory. 
650 2 4 |a Optimization. 
700 1 # |a Vallě, Brigitte.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642022944 
830 # 0 |a Information Security and Cryptography,  |x 1619-7100 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-02295-1 
912 # # |a ZDB-2-SCS 
950 # # |a Computer Science (Springer-11645)