50 Years of Integer Programming 1958-2008 From the Early Years to the State-of-the-Art /

In 1958, Ralph E. Gomory transformed the field of integer programming when he published a short paper that described his cutting-plane algorithm for pure integer programs and announced that the method could be refined to give a finite algorithm for integer programming. In January of 2008, to commemo...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: J<U+00fc>nger, Michael. (Editor), Liebling, Thomas M. (Editor), Naddef, Denis. (Editor), Nemhauser, George L. (Editor), Pulleyblank, William R. (Editor), Reinelt, Gerhard. (Editor), Rinaldi, Giovanni. (Editor), Wolsey, Laurence A. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Subjects:
Online Access:View fulltext via EzAccess
LEADER 04544nam a22005295i 4500
001 9703
003 DE-He213
005 20130725193622.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 # # |a 9783540682790  |9 978-3-540-68279-0 
024 7 # |a 10.1007/978-3-540-68279-0  |2 doi 
050 # 4 |a QA164-167.2 
072 # 7 |a PBV  |2 bicssc 
072 # 7 |a MAT036000  |2 bisacsh 
082 0 4 |a 511.6  |2 23 
100 1 # |a J<U+00fc>nger, Michael.  |e editor. 
245 1 0 |a 50 Years of Integer Programming 1958-2008  |b From the Early Years to the State-of-the-Art /  |c edited by Michael J<U+00fc>nger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, Laurence A. Wolsey.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a XX, 804 p. 151 illus., 52 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
520 # # |a In 1958, Ralph E. Gomory transformed the field of integer programming when he published a short paper that described his cutting-plane algorithm for pure integer programs and announced that the method could be refined to give a finite algorithm for integer programming. In January of 2008, to commemorate the anniversary of Gomory's seminal paper, a special session celebrating fifty years of integer programming was held in Aussois, France, as part of the 12th Combinatorial Optimization Workshop. This book is based on the material presented during this session. 50 Years of Integer Programming offers an account of featured talks at the 2008 Aussois workshop, namely - Michele Conforti, Gřard Cornuǰols, and Giacomo Zambelli: Polyhedral Approaches to Mixed Integer Linear Programming - William Cook: 50+ Years of Combinatorial Integer Programming - Francois Vanderbeck and Laurence A. Wolsey: Reformulation and Decomposition of Integer Programs The book contains reprints of key historical articles together with new introductions and historical perspectives by the authors: Egon Balas, Michel Balinski, Jack Edmonds, Ralph E. Gomory, Arthur M. Geoffrion, Alan J. Hoffman & Joseph B. Kruskal, Richard M. Karp, Harold W. Kuhn, and Ailsa H. Land & Alison G. Doig. It also contains written versions of survey lectures on six of the hottest topics in the field by distinguished members of the integer programming community: - Friedrich Eisenbrand: Integer Programming and Algorithmic Geometry of Numbers - Raymond Hemmecke, Matthias Kp̲pe, Jon Lee, and Robert Weismantel: Nonlinear Integer Programming - Andrea Lodi: Mixed Integer Programming Computation - Francois Margot: Symmetry in Integer Linear Programming - Franz Rendl: Semidefinite Relaxations for Integer Programming - Jean-Philippe P. Richard and Santanu S. Dey: The Group-Theoretic Approach to Mixed Integer Programming Integer programming holds great promise for the future, and continues to build on its foundations. Indeed, Gomory's finite cutting-plane method for the pure integer case is currently being reexamined and is showing new promise as a practical computational method. This book is a uniquely useful celebration of the past, present and future of this important and active field. Ideal for students and researchers in mathematics, computer science and operations research, it exposes mathematical optimization, in particular integer programming and combinatorial optimization, to a broad audience. 
650 # 0 |a Mathematics. 
650 # 0 |a Computational complexity. 
650 # 0 |a Combinatorics. 
650 # 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Optimization. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Operations Research/Decision Theory. 
700 1 # |a Liebling, Thomas M.  |e editor. 
700 1 # |a Naddef, Denis.  |e editor. 
700 1 # |a Nemhauser, George L.  |e editor. 
700 1 # |a Pulleyblank, William R.  |e editor. 
700 1 # |a Reinelt, Gerhard.  |e editor. 
700 1 # |a Rinaldi, Giovanni.  |e editor. 
700 1 # |a Wolsey, Laurence A.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540682745 
856 4 0 |z View fulltext via EzAccess  |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-68279-0 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)