Approximate Commutative Algebra

Approximate Commutative Algebra is an emerging field of research which endeavours to bridge the gap between traditional exact Computational Commutative Algebra and approximate numerical computation. The last 50 years have seen enormous progress in the realm of exact Computational Commutative Algebra...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Robbiano, Lorenzo. (Editor), Abbott, John. (Editor)
Format: Electronic
Language:English
Published: Vienna : Springer Vienna, 2010.
Series:Texts and Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-211-99314-9
LEADER 03301nam a22005175i 4500
001 9659
003 DE-He213
005 20130725192851.0
007 cr nn 008mamaa
008 100301s2010 au | s |||| 0|eng d
020 # # |a 9783211993149  |9 978-3-211-99314-9 
024 7 # |a 10.1007/978-3-211-99314-9  |2 doi 
050 # 4 |a QA564-609 
072 # 7 |a PBMW  |2 bicssc 
072 # 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 # |a Robbiano, Lorenzo.  |e editor. 
245 1 0 |a Approximate Commutative Algebra  |c edited by Lorenzo Robbiano, John Abbott.  |h [electronic resource] / 
264 # 1 |a Vienna :  |b Springer Vienna,  |c 2010. 
300 # # |a XIV, 227p. 15 illus., 4 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Texts and Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria,  |x 0943-853X 
505 0 # |a From oil fields to Hilbert schemes -- Numerical Decomposition of the Rank-Deficiency Set of a Matrix of Multivariate Polynomials -- Towards Geometric Completion of Differential Systems by Points -- Geometric Involutive Bases and Applications to Approximate Commutative Algebra -- Regularization and Matrix Computation in Numerical Polynomial Algebra -- Ideal interpolation: Translations to and from Algebraic Geometry -- An Introduction to Regression and Errors in Variables from an Algebraic Viewpoint -- ApCoA = Embedding Commutative Algebra into Analysis -- Exact Certification in Global Polynomial Optimization Via Rationalizing Sums-Of-Squares. 
520 # # |a Approximate Commutative Algebra is an emerging field of research which endeavours to bridge the gap between traditional exact Computational Commutative Algebra and approximate numerical computation. The last 50 years have seen enormous progress in the realm of exact Computational Commutative Algebra, and given the importance of polynomials in scientific modelling, it is very natural to want to extend these ideas to handle approximate, empirical data deriving from physical measurements of phenomena in the real world. In this volume nine contributions from established researchers describe various approaches to tackling a variety of problems arising in Approximate Commutative Algebra. 
650 # 0 |a Mathematics. 
650 # 0 |a Algebra  |x Data processing. 
650 # 0 |a Geometry, algebraic. 
650 # 0 |a Algebra. 
650 # 0 |a Numerical analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Symbolic and Algebraic Manipulation. 
700 1 # |a Abbott, John.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783211993132 
830 # 0 |a Texts and Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria,  |x 0943-853X 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-211-99314-9 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)