Homotopy Theory of C*-Algebras

Homotopy theory and C*-algebras are central topics in contemporary mathematics. This book introduces a modern homotopy theory for C*-algebras. One basic idea of the setup is to merge C*-algebras and spaces studied in algebraic topology into one category comprising C*-spaces. These objects are suitab...

Full description

Bibliographic Details
Main Author: <U+00d8>stvr̆, Paul Arne. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Basel : Springer Basel, 2010.
Series:Frontiers in Mathematics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0346-0565-6
LEADER 02995nam a22004575i 4500
001 9648
003 DE-He213
005 20130725201818.0
007 cr nn 008mamaa
008 100917s2010 sz | s |||| 0|eng d
020 # # |a 9783034605656  |9 978-3-0346-0565-6 
024 7 # |a 10.1007/978-3-0346-0565-6  |2 doi 
050 # 4 |a QA612-612.8 
072 # 7 |a PBPD  |2 bicssc 
072 # 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514.2  |2 23 
100 1 # |a <U+00d8>stvr̆, Paul Arne.  |e author. 
245 1 0 |a Homotopy Theory of C*-Algebras  |c by Paul Arne <U+00d8>stvr̆.  |h [electronic resource] / 
264 # 1 |a Basel :  |b Springer Basel,  |c 2010. 
300 # # |a VI, 140p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Frontiers in Mathematics,  |x 1660-8046 
505 0 # |a 1 Introduction -- 2 Preliminaries -- 2.1 C*-spaces -- 2.2 G <U+0013> C*-spaces -- 2.3 Model categories -- 3 Unstable C*-homotopy theory -- 3.1 Pointwise model structures -- 3.2 Exact model structures -- 3.3 Matrix invariant model structures -- 3.4 Homotopy invariant model structures -- 3.5 Pointed model structures -- 3.6 Base change -- 4 Stable C*-homotopy theory -- 4.1 C*-spectra -- 4.2 Bispectra -- 4.3 Triangulated structure -- 4.4 Brown representability -- 4.5 C*-symmetric spectra -- 4.6 C*-functors -- 5 Invariants -- 5.1 Cohomology and homology theories -- 5.2 KK-theory and the Eilenberg-MacLane spectrum -- 5.3 HL-theory and the Eilenberg-MacLane -- 5.4 The Chern-Connes-Karoubi character -- 5.5 K-theory of C*-algebras -- 5.6 Zeta functions -- 6 The slice filtration -- References -- Index. 
520 # # |a Homotopy theory and C*-algebras are central topics in contemporary mathematics. This book introduces a modern homotopy theory for C*-algebras. One basic idea of the setup is to merge C*-algebras and spaces studied in algebraic topology into one category comprising C*-spaces. These objects are suitable fodder for standard homotopy theoretic moves, leading to unstable and stable model structures. With the foundations in place one is led to natural definitions of invariants for C*-spaces such as homology and cohomology theories, K-theory and zeta-functions. The text is largely self-contained. It serves a wide audience of graduate students and researchers interested in C*-algebras, homotopy theory and applications. 
650 # 0 |a Mathematics. 
650 # 0 |a Functional analysis. 
650 # 0 |a Algebraic topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Functional Analysis. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034605649 
830 # 0 |a Frontiers in Mathematics,  |x 1660-8046 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0346-0565-6 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)