The Geometry of Filtering

The geometry which is the topic of this book is that determined by a map of one space N onto another, M, mapping a diffusion process, or operator, on N to one on M. Filtering theory is the science of obtaining or estimating information about a system from partial and possibly flawed observations of...

Full description

Bibliographic Details
Main Authors: Elworthy, K. David. (Author), Le Jan, Yves. (Author), Li, Xue-Mei. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Basel : Springer Basel, 2010.
Series:Frontiers in Mathematics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0346-0176-4
LEADER 03781nam a22005055i 4500
001 9616
003 DE-He213
005 20130725203040.0
007 cr nn 008mamaa
008 101127s2010 sz | s |||| 0|eng d
020 # # |a 9783034601764  |9 978-3-0346-0176-4 
024 7 # |a 10.1007/978-3-0346-0176-4  |2 doi 
050 # 4 |a QA614-614.97 
072 # 7 |a PBKS  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 514.74  |2 23 
100 1 # |a Elworthy, K. David.  |e author. 
245 1 4 |a The Geometry of Filtering  |c by K. David Elworthy, Yves Le Jan, Xue-Mei Li.  |h [electronic resource] / 
264 # 1 |a Basel :  |b Springer Basel,  |c 2010. 
300 # # |a XI, 169p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Frontiers in Mathematics,  |x 1660-8046 
505 0 # |a 1 Diffusion Operators -- 2 Decomposition of Diffusion Operators -- 3 Equivariant Diffusions on Principal Bundles -- 4 Projectible Diffusion Processes -- 5 Filtering with non-Markovian Observations -- 6 The Commutation Property -- 7 Example: Riemannian Submersions and Symmetric Spaces -- 8 Example: Stochastic Flows -- 9 Appendices. 
520 # # |a The geometry which is the topic of this book is that determined by a map of one space N onto another, M, mapping a diffusion process, or operator, on N to one on M. Filtering theory is the science of obtaining or estimating information about a system from partial and possibly flawed observations of it. The system itself may be random, and the flaws in the observations can be caused by additional noise. In this volume the randomness and noises will be of Gaussian white noise type so that the system can be modelled by a diffusion process; that is it evolves continuously in time in a Markovian way, the future evolution depending only on the present situation. This is the standard situation of systems governed by Ito type stochastic differential equations. The state space will be the smooth manifold, N, possibly infinite dimensional, and the "observations" will be obtained by a smooth map onto another manifold, N, say. We emphasise that the geometry is important even when both manifolds are Euclidean spaces. This can also be viewed from a purely partial differential equations viewpoint as one smooth second order elliptic partial differential operator lying above another, both with no zero order term. We consider the geometry of this situation with special emphasis on situations of geometric, stochastic analytic, or filtering interest. The most well studied case is of one Brownian motion being mapped to another with a consequent skew product decomposition (or equivalently the case of Riemannian submersions). This sort of decomposition is generalised and a key to the rest of the book. It is used to study in particular, classical filtering, (semi-)connections determined by stochastic flows, and generalised Weitzenbock formulae. 
650 # 0 |a Mathematics. 
650 # 0 |a Global analysis. 
650 # 0 |a Global differential geometry. 
650 # 0 |a Distribution (Probability theory). 
650 1 4 |a Mathematics. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Probability Theory and Stochastic Processes. 
700 1 # |a Le Jan, Yves.  |e author. 
700 1 # |a Li, Xue-Mei.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034601757 
830 # 0 |a Frontiers in Mathematics,  |x 1660-8046 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0346-0176-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)