Boundary Integral Equations on Contours with Peaks

The purpose of this book is to give a comprehensive exposition of the theory of boundary integral equations for single and double layer potentials on curves with exterior and interior cusps. The theory was developed by the authors during the last twenty years and the present volume is based on their...

Full description

Bibliographic Details
Main Authors: Maz<U+0019>ya, Vladimir G. (Author), Soloviev, Alexander A. (Author)
Corporate Author: SpringerLink (Online service)
Other Authors: Shaposhnikova, Tatyana. (Editor)
Format: Electronic
Language:English
Published: Basel : Birkhũser Basel, 2010.
Series:Operator Theory: Advances and Applications ; 196
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0346-0171-9
LEADER 02279nam a22004335i 4500
001 9614
003 DE-He213
005 20130725194638.0
007 cr nn 008mamaa
008 100301s2010 sz | s |||| 0|eng d
020 # # |a 9783034601719  |9 978-3-0346-0171-9 
024 7 # |a 10.1007/978-3-0346-0171-9  |2 doi 
050 # 4 |a QA431 
072 # 7 |a PBKL  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.45  |2 23 
100 1 # |a Maz<U+0019>ya, Vladimir G.  |e author. 
245 1 0 |a Boundary Integral Equations on Contours with Peaks  |c by Vladimir G. Maz<U+0019>ya, Alexander A. Soloviev ; edited by Tatyana Shaposhnikova.  |h [electronic resource] / 
264 # 1 |a Basel :  |b Birkhũser Basel,  |c 2010. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Operator Theory: Advances and Applications ;  |v 196 
520 # # |a The purpose of this book is to give a comprehensive exposition of the theory of boundary integral equations for single and double layer potentials on curves with exterior and interior cusps. The theory was developed by the authors during the last twenty years and the present volume is based on their results. The first three chapters are devoted to harmonic potentials, and in the final chapter elastic potentials are treated. Theorems on solvability in various function spaces and asymptotic representations for solutions near the cusps are obtained. Kernels and cokernels of the integral operators are explicitly described. The method is based on a study of auxiliary boundary value problems which is of interest in itself. 
650 # 0 |a Mathematics. 
650 # 0 |a Integral equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Integral Equations. 
700 1 # |a Soloviev, Alexander A.  |e author. 
700 1 # |a Shaposhnikova, Tatyana.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034601702 
830 # 0 |a Operator Theory: Advances and Applications ;  |v 196 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0346-0171-9 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)