Group Identities on Units and Symmetric Units of Group Rings

Let FG be the group ring of a group G over a field F. Write U(FG) for the group of units of FG. It is an important problem to determine the conditions under which U(FG) satisfies a group identity. In the mid 1990s, a conjecture of Hartley was verified, namely, if U(FG) satisfies a group identity, an...

Full description

Bibliographic Details
Main Author: Lee, Gregory T. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London, 2010.
Series:Algebra and Applications ; 12
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84996-504-0
LEADER 02728nam a22004575i 4500
001 9552
003 DE-He213
005 20130725201538.0
007 cr nn 008mamaa
008 100825s2010 xxk| s |||| 0|eng d
020 # # |a 9781849965040  |9 978-1-84996-504-0 
024 7 # |a 10.1007/978-1-84996-504-0  |2 doi 
050 # 4 |a QA251.5 
072 # 7 |a PBF  |2 bicssc 
072 # 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.46  |2 23 
100 1 # |a Lee, Gregory T.  |e author. 
245 1 0 |a Group Identities on Units and Symmetric Units of Group Rings  |c by Gregory T. Lee.  |h [electronic resource] / 
264 # 1 |a London :  |b Springer London,  |c 2010. 
300 # # |a XII, 196 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Algebra and Applications ;  |v 12 
505 0 # |a Group Identities on Units of Group Rings -- Group Identities on Symmetric Units -- Lie Identities on Symmetric Elements -- Nilpotence of U(FG) and U+(FG) -- The Bounded Engel Property -- Solvability of U(FG) and U+(FG) -- Further Reading -- Some Results on Prime and Semiprime Rings. 
520 # # |a Let FG be the group ring of a group G over a field F. Write U(FG) for the group of units of FG. It is an important problem to determine the conditions under which U(FG) satisfies a group identity. In the mid 1990s, a conjecture of Hartley was verified, namely, if U(FG) satisfies a group identity, and G is torsion, then FG satisfies a polynomial identity. Necessary and sufficient conditions for U(FG) to satisfy a group identity soon followed. Since the late 1990s, many papers have been devoted to the study of the symmetric units; that is, those units u satisfying u* = u, where * is the involution on FG defined by sending each element of G to its inverse. The conditions under which these symmetric units satisfy a group identity have now been determined. This book presents these results for arbitrary group identities, as well as the conditions under which the unit group or the set of symmetric units satisfies several particular group identities of interest. 
650 # 0 |a Mathematics. 
650 # 0 |a Algebra. 
650 # 0 |a Group theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Associative Rings and Algebras. 
650 2 4 |a Group Theory and Generalizations. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781849965033 
830 # 0 |a Algebra and Applications ;  |v 12 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84996-504-0 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)