Finite-element-model Updating Using Computional Intelligence Techniques Applications to Structural Dynamics /

Finite element models (FEMs) are widely used to understand the dynamic behaviour of various systems. FEM updating allows FEMs to be tuned better to reflect measured data and may be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. Finite E...

Full description

Bibliographic Details
Main Author: Marwala, Tshilidzi. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London, 2010.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84996-323-7
LEADER 04393nam a22005055i 4500
001 9540
003 DE-He213
005 20130725200341.0
007 cr nn 008mamaa
008 100603s2010 xxk| s |||| 0|eng d
020 # # |a 9781849963237  |9 978-1-84996-323-7 
024 7 # |a 10.1007/978-1-84996-323-7  |2 doi 
050 # 4 |a Q342 
072 # 7 |a UYQ  |2 bicssc 
072 # 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 # |a Marwala, Tshilidzi.  |e author. 
245 1 0 |a Finite-element-model Updating Using Computional Intelligence Techniques  |b Applications to Structural Dynamics /  |c by Tshilidzi Marwala.  |h [electronic resource] : 
264 # 1 |a London :  |b Springer London,  |c 2010. 
300 # # |a XVI, 247p. 18 illus., 2 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Introduction to Finite Element Model Updating -- Finite Element Model Updating Using Neural Networks -- Maximum Likelihood Approach to Finite Element Model Updating -- Finite Element Model Updating Using Evolutionary Optimization Techniques: Genetic Algorithms and Particle Swarm Optimization -- Finite Element Model Updating Using Simulated Annealing -- Finite Element Model Updating Using Response Surface Method -- Bayesian Approach to Finite Element Model Updating -- Model Selection in Finite Element Model Updating -- Expectation Maximization Algorithm for Finite Element Model Updating -- Damage Detection Using Finite Element Model Updating. 
520 # # |a Finite element models (FEMs) are widely used to understand the dynamic behaviour of various systems. FEM updating allows FEMs to be tuned better to reflect measured data and may be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. Finite Element Model Updating Using Computational Intelligence Techniques applies both strategies to the field of structural mechanics, an area vital for aerospace, civil and mechanical engineering. Vibration data is used for the updating process. Following an introduction a number of computational intelligence techniques to facilitate the updating process are proposed; they include: " multi-layer perceptron neural networks for real-time FEM updating; " particle swarm and genetic-algorithm-based optimization methods to accommodate the demands of global versus local optimization models; " simulated annealing to put the methodologies into a sound statistical basis; and " response surface methods and expectation maximization algorithms to demonstrate how FEM updating can be performed in a cost-effective manner; and to help manage computational complexity. Based on these methods, the most appropriate updated FEM is selected using the Bayesian approach, a problem that traditional FEM updating has not addressed. This is found to incorporate engineering judgment into finite elements systematically through the formulations of prior distributions. Throughout the text, case studies, specifically designed to demonstrate the special principles are included. These serve to test the viability of the new approaches in FEM updating. Finite Element Model Updating Using Computational Intelligence Techniques analyses the state of the art in FEM updating critically and based on these findings, identifies new research directions, making it of interest to researchers in strucural dynamics and practising engineers using FEMs. Graduate students of mechanical, aerospace and civil engineering will also find the text instructive. 
650 # 0 |a Engineering. 
650 # 0 |a Computer simulation. 
650 # 0 |a Computer science. 
650 # 0 |a Mechanical engineering. 
650 # 0 |a Civil engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Structural Mechanics. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Civil Engineering. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781849963220 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84996-323-7 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)