Introduction to Evolutionary Algorithms

Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-...

Full description

Bibliographic Details
Main Authors: Yu, Xinjie. (Author), Gen, Mitsuo. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London, 2010.
Series:Decision Engineering,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84996-129-5
LEADER 03303nam a22005175i 4500
001 9498
003 DE-He213
005 20130725200426.0
007 cr nn 008mamaa
008 100609s2010 xxk| s |||| 0|eng d
020 # # |a 9781849961295  |9 978-1-84996-129-5 
024 7 # |a 10.1007/978-1-84996-129-5  |2 doi 
050 # 4 |a QA76.9.M35 
072 # 7 |a GPFC  |2 bicssc 
072 # 7 |a TEC000000  |2 bisacsh 
082 0 4 |a 620  |2 23 
100 1 # |a Yu, Xinjie.  |e author. 
245 1 0 |a Introduction to Evolutionary Algorithms  |c by Xinjie Yu, Mitsuo Gen.  |h [electronic resource] / 
264 # 1 |a London :  |b Springer London,  |c 2010. 
300 # # |a XVII, 418p. 168 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Decision Engineering,  |v 0  |x 1619-5736 ; 
505 0 # |a Simple Evolutionary Algorithms -- Advanced Evolutionary Algorithms -- Constrained Optimization -- Multimodal Optimization -- Multiobjective Optimization -- Combinatorial Optimization -- Swarm Intelligence -- Artificial Immune Systems -- Genetic Programming. 
520 # # |a Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: " genetic algorithms, " differential evolution, " swarm intelligence, and " artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline. 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 # 0 |a Computer simulation. 
650 # 0 |a Physics. 
650 # 0 |a Control engineering systems. 
650 1 4 |a Engineering. 
650 2 4 |a Complexity. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Control , Robotics, Mechatronics. 
650 2 4 |a Simulation and Modeling. 
700 1 # |a Gen, Mitsuo.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781849961288 
830 # 0 |a Decision Engineering,  |v 0  |x 1619-5736 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84996-129-5 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)