Graphs and Matrices

Whilst it is a moot point amongst researchers, linear algebra is an important component in the study of graphs. This book illustrates the elegance and power of matrix techniques in the study of graphs by means of several results, both classical and recent. The emphasis on matrix techniques is greate...

Full description

Bibliographic Details
Main Author: Bapat, R. B. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London, 2010.
Series:Universitext
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84882-981-7
LEADER 03100nam a22004335i 4500
001 9458
003 DE-He213
005 20130725201027.0
007 cr nn 008mamaa
008 100721s2010 xxk| s |||| 0|eng d
020 # # |a 9781848829817  |9 978-1-84882-981-7 
024 7 # |a 10.1007/978-1-84882-981-7  |2 doi 
050 # 4 |a QA184-205 
072 # 7 |a PBF  |2 bicssc 
072 # 7 |a MAT002050  |2 bisacsh 
082 0 4 |a 512.5  |2 23 
100 1 # |a Bapat, R. B.  |e author. 
245 1 0 |a Graphs and Matrices  |c by R. B. Bapat.  |h [electronic resource] / 
264 # 1 |a London :  |b Springer London,  |c 2010. 
300 # # |a IX, 171 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Universitext 
505 0 # |a Preliminaries -- Incidence Matrix -- Adjacency Matrix -- Laplacian Matrix -- Cycles and Cuts -- Regular Graphs -- Algebraic Connectivity -- Distance Matrix of a Tree -- Resistance Distance -- Laplacian Eigenvalues of Threshold Graphs -- Positive Definite Completion Problem -- Matrix Games Based on Graphs -- Hints and Solutions to Selected Exercises. 
520 # # |a Whilst it is a moot point amongst researchers, linear algebra is an important component in the study of graphs. This book illustrates the elegance and power of matrix techniques in the study of graphs by means of several results, both classical and recent. The emphasis on matrix techniques is greater than other standard references on algebraic graph theory, and the important matrices associated with graphs such as incidence, adjacency and Laplacian matrices are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration, and the inclusion of exercises enables practical learning throughout the book. It may also be applied to a selection of sub-disciplines within science and engineering. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory who want to be acquainted with matrix theoretic ideas used in graph theory, it will also benefit a wider, cross-disciplinary readership. 
650 # 0 |a Mathematics. 
650 # 0 |a Matrix theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781848829800 
830 # 0 |a Universitext 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84882-981-7 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)