Topics in Physical Mathematics

The roots of physical mathematics can be traced back to the very beginning of man's attempts to understand nature. Indeed, mathematics and physics were part of what was called natural philosophy. Rapid growth of the physical sciences, aided by technological progress and increasing abstraction...

Full description

Bibliographic Details
Main Author: Marathe, Kishore. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London : Imprint: Springer, 2010.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84882-939-8
LEADER 03388nam a22005055i 4500
001 9448
003 DE-He213
005 20130725201323.0
007 cr nn 008mamaa
008 100809s2010 xxk| s |||| 0|eng d
020 # # |a 9781848829398  |9 978-1-84882-939-8 
024 7 # |a 10.1007/978-1-84882-939-8  |2 doi 
050 # 4 |a QA641-670 
072 # 7 |a PBMP  |2 bicssc 
072 # 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 # |a Marathe, Kishore.  |e author. 
245 1 0 |a Topics in Physical Mathematics  |c by Kishore Marathe.  |h [electronic resource] / 
264 # 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2010. 
300 # # |a XXII, 419p. 3 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Algebra -- Topology -- Manifolds -- Bundles and Connections -- Characteristic Classes -- Theory of Fields, I: Classical -- Theory of Fields, II: Quantum and Topological -- Yang-Mills-Higgs Fields -- 4-Manifold Invariants -- 3-Manifold Invariants -- Knot and Link Invariants -- Dictionary of Terminology -- Historical and Biographical Notes -- Categories and Chain Complexes -- Operator Theory. 
520 # # |a The roots of physical mathematics can be traced back to the very beginning of man's attempts to understand nature. Indeed, mathematics and physics were part of what was called natural philosophy. Rapid growth of the physical sciences, aided by technological progress and increasing abstraction in mathematical research, caused a separation of the sciences and mathematics in the 20th century. Physicists methods were often rejected by mathematicians as imprecise, and mathematicians approach to physical theories was not understood by the physicists. However, two fundamental physical theories, relativity and quantum theory, influenced new developments in geometry, functional analysis and group theory. The relation of Yang-Mills theory to the theory of connections in a fiber bundle discovered in the early 1980s has paid rich dividends to the geometric topology of low dimensional manifolds. Aimed at a wide audience, this self-contained book includes a detailed background from both mathematics and theoretical physics to enable a deeper understanding of the role that physical theories play in mathematics. Whilst the field continues to expand rapidly, it is not the intention of this book to cover its enormity. Instead, it seeks to lead the reader to their next point of exploration in this vast and exciting landscape. 
650 # 0 |a Mathematics. 
650 # 0 |a Field theory (Physics). 
650 # 0 |a Global analysis. 
650 # 0 |a Global differential geometry. 
650 # 0 |a Topology. 
650 # 0 |a Cell aggregation  |x Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Topology. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781848829381 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84882-939-8 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)