Specialization of Quadratic and Symmetric Bilinear Forms

The specialization theory of quadratic and symmetric bilinear forms over fields and the subsequent generic splitting theory of quadratic forms were invented by the author in the mid-1970's. They came to fruition in the ensuing decades and have become an integral part of the geometric methods in...

Full description

Bibliographic Details
Main Author: Knebusch, Manfred. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London : Imprint: Springer, 2010.
Series:Algebra and Applications, 11
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84882-242-9
LEADER 02761nam a22004335i 4500
001 9382
003 DE-He213
005 20131013031526.0
007 cr nn 008mamaa
008 110121s2010 xxk| s |||| 0|eng d
020 # # |a 9781848822429  |9 978-1-84882-242-9 
024 7 # |a 10.1007/978-1-84882-242-9  |2 doi 
050 # 4 |a QA150-272 
072 # 7 |a PBF  |2 bicssc 
072 # 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 # |a Knebusch, Manfred.  |e author. 
245 1 0 |a Specialization of Quadratic and Symmetric Bilinear Forms  |c by Manfred Knebusch.  |h [electronic resource] / 
264 # 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2010. 
300 # # |a XIV, 192 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Algebra and Applications,  |v 11  |x 1572-5553 ; 
505 0 # |a Fundamentals of Specialization Theory -- Generic Splitting Theory -- Some Applications -- Specialization with Respect to Quadratic Places -- Forms -- References -- Index. 
520 # # |a The specialization theory of quadratic and symmetric bilinear forms over fields and the subsequent generic splitting theory of quadratic forms were invented by the author in the mid-1970's. They came to fruition in the ensuing decades and have become an integral part of the geometric methods in quadratic form theory. This book comprehensively covers the specialization and generic splitting theories. These theories, originally developed mainly for fields of characteristic different from 2, are explored here without this restriction. In this book, a quadratic form ¡ over a field of characteristic 2 is allowed to have a big quasilinear part QL(¡) (defined as the restriction of ¡ to the radical of the bilinear form associated to ¡), while in most of the literature QL(¡) is assumed to have dimension at most 1. Of course, in nature, quadratic forms with a big quasilinear part abound. In addition to chapters on specialization theory, generic splitting theory and their applications, the book's final chapter contains research never before published on specialization with respect to quadratic places and will provide the reader with a glimpse towards the future. 
650 # 0 |a Mathematics. 
650 # 0 |a Algebra. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781848822412 
830 # 0 |a Algebra and Applications,  |v 11  |x 1572-5553 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84882-242-9 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)