Domain Driven Data Mining

In the present thriving global economy a need has evolved for complex data analysis to enhance an organizations production systems, decision-making tactics, and performance. In turn, data mining has emerged as one of the most active areas in information technologies. Domain Driven Data Mining offer...

Full description

Bibliographic Details
Main Authors: Cao, Longbing. (Author), Yu, Philip S. (Author), Zhang, Chengqi. (Author), Zhao, Yanchang. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston, MA : Springer US, 2010.
Edition:First.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4419-5737-5
LEADER 03396nam a22005295i 4500
001 9039
003 DE-He213
005 20130725194631.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 # # |a 9781441957375  |9 978-1-4419-5737-5 
024 7 # |a 10.1007/978-1-4419-5737-5  |2 doi 
050 # 4 |a QA76.9.D343 
072 # 7 |a UNF  |2 bicssc 
072 # 7 |a UYQE  |2 bicssc 
072 # 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 # |a Cao, Longbing.  |e author. 
245 1 0 |a Domain Driven Data Mining  |c by Longbing Cao, Philip S. Yu, Chengqi Zhang, Yanchang Zhao.  |h [electronic resource] / 
250 # # |a First. 
264 # 1 |a Boston, MA :  |b Springer US,  |c 2010. 
300 # # |a XIII, 237p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
520 # # |a In the present thriving global economy a need has evolved for complex data analysis to enhance an organization s production systems, decision-making tactics, and performance. In turn, data mining has emerged as one of the most active areas in information technologies. Domain Driven Data Mining offers state-of the-art research and development outcomes on methodologies, techniques, approaches and successful applications in domain driven, actionable knowledge discovery. About this book: Enhances the actionability and wider deployment of existing data-centered data mining through a combination of domain and business oriented factors, constraints and intelligence. Examines real-world challenges to and complexities of the current KDD methodologies and techniques. Details a paradigm shift from "data-centered pattern mining" to "domain driven actionable knowledge discovery" for next-generation KDD research and applications. Bridges the gap between business expectations and research output through detailed exploration of the findings, thoughts and lessons learned in conducting several large-scale, real-world data mining business applications Includes techniques, methodologies and case studies in real-life enterprise data mining Addresses new areas such as blog mining Domain Driven Data Mining is suitable for researchers, practitioners and university students in the areas of data mining and knowledge discovery, knowledge engineering, human-computer interaction, artificial intelligence, intelligent information processing, decision support systems, knowledge management, and KDD project management. 
650 # 0 |a Computer science. 
650 # 0 |a Data mining. 
650 # 0 |a Information storage and retrieval systems. 
650 # 0 |a Information systems. 
650 # 0 |a Management information systems. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Business Information Systems. 
650 2 4 |a Information Systems Applications (incl.Internet). 
650 2 4 |a Information Storage and Retrieval. 
700 1 # |a Yu, Philip S.  |e author. 
700 1 # |a Zhang, Chengqi.  |e author. 
700 1 # |a Zhao, Yanchang.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441957368 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4419-5737-5 
912 # # |a ZDB-2-SCS 
950 # # |a Computer Science (Springer-11645)