Decision Systems and Nonstochastic Randomness

Decision Systems and Nonstochastic Randomness presents the first mathematical formalization of the statistical regularities of non-stochastic randomness and demonstrates how these regularities extend the standard probability-based model of decision making under uncertainty, allowing for the descri...

Full description

Bibliographic Details
Main Author: Ivanenko, V. I. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2010.
Edition:1.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4419-5548-7
LEADER 02911nam a22005055i 4500
001 9004
003 DE-He213
005 20130725200145.0
007 cr nn 008mamaa
008 100528s2010 xxu| s |||| 0|eng d
020 # # |a 9781441955487  |9 978-1-4419-5548-7 
024 7 # |a 10.1007/978-1-4419-5548-7  |2 doi 
050 # 4 |a QA273.A1-274.9 
050 # 4 |a QA274-274.9 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a PBWL  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 # |a Ivanenko, V. I.  |e author. 
245 1 0 |a Decision Systems and Nonstochastic Randomness  |c by V. I. Ivanenko.  |h [electronic resource] / 
250 # # |a 1. 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 # # |a XII, 272p. 6 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
520 # # |a  Decision Systems and Nonstochastic Randomness presents the first mathematical formalization of the statistical regularities of non-stochastic randomness and demonstrates how these regularities extend the standard probability-based model of decision making under uncertainty, allowing for the description of uncertain mass events that do not fit standard stochastic models. Each self-contained chapter of this neatly-structured monograph includes a detailed introduction and summary of its contents. The included results are presented not only with rigorous proofs but also through numerous intuitive examples. An appendix is provided which includes classic results from the theory of functions and measured sets as well as decision theory, offering an overview of the necessary prerequisites. The formalism of statistical regularities developed in this book will have a significant influence on decision theory and information theory as well as numerous other disciplines. Because of these far-reaching implications, this book may be a useful resource for statisticians, mathematicians, engineers, economists and other utilizing nonstochastic modeling and decision theory. 
650 # 0 |a Mathematics. 
650 # 0 |a Distribution (Probability theory). 
650 # 0 |a Mathematical statistics. 
650 # 0 |a Economics  |x Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Game Theory, Economics, Social and Behav. Sciences. 
650 2 4 |a Operations Research/Decision Theory. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441955470 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4419-5548-7 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)