Practical Bifurcation and Stability Analysis

This book covers the central role that bifurcations play in nonlinear phenomena, explaining mechanisms of how stability is gained or lost. It emphasizes practical and computational methods for analyzing dynamical systems. A wide range of phenomena between equilibrium and chaos is explained and illus...

Full description

Bibliographic Details
Main Author: Seydel, R<U+00fc>diger. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2010.
Series:Interdisciplinary Applied Mathematics, 5
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4419-1740-9
LEADER 03872nam a22005175i 4500
001 8983
003 DE-He213
005 20130725193917.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 # # |a 9781441917409  |9 978-1-4419-1740-9 
024 7 # |a 10.1007/978-1-4419-1740-9  |2 doi 
050 # 4 |a QA313 
072 # 7 |a PBWR  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 # |a Seydel, R<U+00fc>diger.  |e author. 
245 1 0 |a Practical Bifurcation and Stability Analysis  |c by R<U+00fc>diger Seydel.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 # # |a XV, 477p. 200 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Interdisciplinary Applied Mathematics,  |v 5  |x 0939-6047 ; 
505 0 # |a Contents: Preface -- Notation -- Introduction and Prerequisites -- Basic Nonlinear Phenomena -- Applications and Extensions.-Principles of Continuation -- Calculation of the Branching Behavior of Nonlinear Equations -- Calculating Branching Behavior of Boundary-Value Problems -- Stability of Periodic Solutions -- Qualitative Instruments -- Chaos -- Appendices -- List of Major Examples -- References -- Index. 
520 # # |a This book covers the central role that bifurcations play in nonlinear phenomena, explaining mechanisms of how stability is gained or lost. It emphasizes practical and computational methods for analyzing dynamical systems. A wide range of phenomena between equilibrium and chaos is explained and illustrated by examples from science and engineering. The book is a practical guide for performing parameter studies and includes exercises. Combining an introduction on the textbook level with an exposition of computational methods, this book addresses the mathematical needs of scientists and engineers. It should be of interest to those in a wide variety of disciplines, including physics, mechanical engineering, electrical engineering, chemistry and chemical engineering, biology, and medicine. Both graduate students (in courses on dynamical systems, stability analysis, differential equations, and chaos) and professionals will be able to use the book equally well. The introduction avoids mathematical formalism, and the only required background is calculus. In the third edition there is a chapter on applications and extensions of standard ODE approaches, for example, to delay equations, to differential-algebraic equations, and to reaction-diffusion problems. Additional material is inserted, including the topics deterministic risk, pattern formation, and control of chaos, and many further references. Review of Earlier Edition: "The outcome is impressive. The book is beautifully written in a style that seeks not only to develop the subject matter but also to expose the thought processes behind the mathematics." Proceedings of the Edinburgh Mathematical Society 
650 # 0 |a Mathematics. 
650 # 0 |a Differentiable dynamical systems. 
650 # 0 |a Numerical analysis. 
650 # 0 |a Mathematical physics. 
650 # 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Numerical Analysis. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441917393 
830 # 0 |a Interdisciplinary Applied Mathematics,  |v 5  |x 0939-6047 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4419-1740-9 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)