Deformation Theory

The basic problem of deformation theory in algebraic geometry involves watching a small deformation of one member of a family of objects, such as varieties, or subschemes in a fixed space, or vector bundles on a fixed scheme. In this new book, Robin Hartshorne studies first what happens over small i...

Full description

Bibliographic Details
Main Author: Hartshorne, Robin. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2010.
Edition:1.
Series:Graduate Texts in Mathematics, 257
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4419-1596-2
LEADER 02638nam a22004455i 4500
001 8956
003 DE-He213
005 20130725193659.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 # # |a 9781441915962  |9 978-1-4419-1596-2 
024 7 # |a 10.1007/978-1-4419-1596-2  |2 doi 
050 # 4 |a QA564-609 
072 # 7 |a PBMW  |2 bicssc 
072 # 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 # |a Hartshorne, Robin.  |e author. 
245 1 0 |a Deformation Theory  |c by Robin Hartshorne.  |h [electronic resource] / 
250 # # |a 1. 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 # # |a VIII, 236p. 19 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Graduate Texts in Mathematics,  |v 257  |x 0072-5285 ; 
505 0 # |a Preface -- Getting Started -- Higher Order Deformations -- Formal Moduli -- Global Questions -- References. 
520 # # |a The basic problem of deformation theory in algebraic geometry involves watching a small deformation of one member of a family of objects, such as varieties, or subschemes in a fixed space, or vector bundles on a fixed scheme. In this new book, Robin Hartshorne studies first what happens over small infinitesimal deformations, and then gradually builds up to more global situations, using methods pioneered by Kodaira and Spencer in the complex analytic case, and adapted and expanded in algebraic geometry by Grothendieck. Topics include: * deformations over the dual numbers; * smoothness and the infinitesimal lifting property; * Zariski tangent space and obstructions to deformation problems; * pro-representable functors of Schlessinger; * infinitesimal study of moduli spaces such as the Hilbert scheme, Picard scheme, moduli of curves, and moduli of stable vector bundles. The author includes numerous exercises, as well as important examples illustrating various aspects of the theory. This text is based on a graduate course taught by the author at the University of California, Berkeley. 
650 # 0 |a Mathematics. 
650 # 0 |a Geometry, algebraic. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441915955 
830 # 0 |a Graduate Texts in Mathematics,  |v 257  |x 0072-5285 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4419-1596-2 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)