A Concise Introduction to Mathematical Logic

Traditional logic as a part of philosophy is one of the oldest scientific disciplines and can be traced back to the Stoics and to Aristotle. Mathematical logic, however, is a relatively young discipline and arose from the endeavors of Peano, Frege, and others to create a logistic foundation for math...

Full description

Bibliographic Details
Main Author: Rautenberg, Wolfgang. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2010.
Edition:3.
Series:Universitext
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4419-1221-3
LEADER 03591nam a22004815i 4500
001 8870
003 DE-He213
005 20130725200731.0
007 cr nn 008mamaa
008 100701s2010 xxu| s |||| 0|eng d
020 # # |a 9781441912213  |9 978-1-4419-1221-3 
024 7 # |a 10.1007/978-1-4419-1221-3  |2 doi 
050 # 4 |a QA8.9-10.3 
072 # 7 |a PBC  |2 bicssc 
072 # 7 |a PBCD  |2 bicssc 
072 # 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
100 1 # |a Rautenberg, Wolfgang.  |e author. 
245 1 2 |a A Concise Introduction to Mathematical Logic  |c by Wolfgang Rautenberg.  |h [electronic resource] / 
250 # # |a 3. 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 # # |a XXI, 319p. 25 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Universitext 
505 0 # |a Preface -- Introduction -- Notation -- Propositional Logic -- First-Order Logic -- Complete Logical Calculi -- Foundations of Logical Programming -- Elements of Model Theory -- Incompleteness and Undecidability -- On the Theory of Self-Reference -- Bibliography -- Index of Terms and Names -- Index of Symbols. 
520 # # |a Traditional logic as a part of philosophy is one of the oldest scientific disciplines and can be traced back to the Stoics and to Aristotle. Mathematical logic, however, is a relatively young discipline and arose from the endeavors of Peano, Frege, and others to create a logistic foundation for mathematics. It steadily developed during the twentieth century into a broad discipline with several sub-areas and numerous applications in mathematics, informatics, linguistics and philosophy. This book treats the most important material in a concise and streamlined fashion. The third edition is a thorough and expanded revision of the former. Although the book is intended for use as a graduate text, the first three chapters can easily be read by undergraduates interested in mathematical logic. These initial chapters cover the material for an introductory course on mathematical logic, combined with applications of formalization techniques to set theory. Chapter 3 is partly of descriptive nature, providing a view towards algorithmic decision problems, automated theorem proving, non-standard models including non-standard analysis, and related topics. The remaining chapters contain basic material on logic programming for logicians and computer scientists, model theory, recursion theory, Gd̲el<U+0019>s Incompleteness Theorems, and applications of mathematical logic. Philosophical and foundational problems of mathematics are discussed throughout the text. Each section of the seven chapters ends with exercises some of which of importance for the text itself. There are hints to most of the exercises in a separate file Solution Hints to the Exercises which is not part of the book but is available from the author<U+0019>s website. 
650 # 0 |a Mathematics. 
650 # 0 |a Computer science. 
650 # 0 |a Logic, Symbolic and mathematical. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Computational Science and Engineering. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441912206 
830 # 0 |a Universitext 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4419-1221-3 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)