Computational Biology Issues and Applications in Oncology /

Computational Biology: Issues and Applications in Oncology provides a comprehensive report on recent techniques and results in computational oncology essential to the knowledge of scientists, engineers, as well as postgraduate students working on the areas of computational biology, bioinformatics, a...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Pham, Tuan. (Editor)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2010.
Series:Applied Bioinformatics and Biostatistics in Cancer Research
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4419-0811-7
LEADER 03416nam a22004455i 4500
001 8781
003 DE-He213
005 20130725192921.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 # # |a 9781441908117  |9 978-1-4419-0811-7 
024 7 # |a 10.1007/978-1-4419-0811-7  |2 doi 
050 # 4 |a RC261-271 
072 # 7 |a MJCL  |2 bicssc 
072 # 7 |a MED062000  |2 bisacsh 
082 0 4 |a 614.5999  |2 23 
100 1 # |a Pham, Tuan.  |e editor. 
245 1 0 |a Computational Biology  |b Issues and Applications in Oncology /  |c edited by Tuan Pham.  |h [electronic resource] : 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 # # |a VIII, 309p. 90 illus., 26 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Applied Bioinformatics and Biostatistics in Cancer Research 
505 0 # |a Identification of relevant genes from microarray experiments based on partial least squares weights: Application to cancer genomics -- Geometric biclustering and its applications to cancer tissue classification based on DNA microarray gene expression data -- Statistical analysis on microarray data: selection of gene prognosis signatures -- Agent-based modeling of ductal carcinoma in situ: application to patient-specific breast cancer modelling -- Multi-cluster class based classification for the diagnosis of suspicious areas in digital mammograms -- Analysis of cancer data using evolutionary computation -- Analysis of population-based genetic association studies applied to cancer susceptibility and prognosis -- Selected applications of graph-based tracking methods for cancer research -- Recent advances in cell classification for cancer research and drug discovery -- Computational tools and resources for systems biology approaches in cancer -- Laser speckle imaging for blood flow analyses -- The Challenges in Blood Proteomic Biomarker Discovery. 
520 # # |a Computational Biology: Issues and Applications in Oncology provides a comprehensive report on recent techniques and results in computational oncology essential to the knowledge of scientists, engineers, as well as postgraduate students working on the areas of computational biology, bioinformatics, and medical informatics. With chapters timely prepared and written by experts in the field, this in-depth and up-to-date volume covers advanced statistical methods, heuristic algorithms, cluster analysis, data modeling, image and pattern analysis applied to cancer research. The literature and coverage of a spectrum of key topics in issues and applications in oncology make this a useful resource to computational life-science researchers wishing to enhance the most recent knowledge to facilitate their own investigations. 
650 # 0 |a Medicine. 
650 # 0 |a Oncology. 
650 # 0 |a Toxicology. 
650 1 4 |a Biomedicine. 
650 2 4 |a Cancer Research. 
650 2 4 |a Pharmacology/Toxicology. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441908100 
830 # 0 |a Applied Bioinformatics and Biostatistics in Cancer Research 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4419-0811-7 
912 # # |a ZDB-2-SBL 
950 # # |a Biomedical and Life Sciences (Springer-11642)