|
|
|
|
LEADER |
03637nam a22004575i 4500 |
001 |
8727 |
003 |
DE-He213 |
005 |
20130725193654.0 |
007 |
cr nn 008mamaa |
008 |
100301s2010 xxu| s |||| 0|eng d |
020 |
# |
# |
|a 9781441904522
|9 978-1-4419-0452-2
|
024 |
7 |
# |
|a 10.1007/978-1-4419-0452-2
|2 doi
|
050 |
# |
4 |
|a RC321-580
|
072 |
# |
7 |
|a PSAN
|2 bicssc
|
072 |
# |
7 |
|a MED057000
|2 bisacsh
|
082 |
0 |
4 |
|a 612.8
|2 23
|
100 |
1 |
# |
|a Roe, Anna W.
|e editor.
|
245 |
1 |
0 |
|a Imaging the Brain with Optical Methods
|c edited by Anna W. Roe.
|h [electronic resource] /
|
264 |
# |
1 |
|a New York, NY :
|b Springer New York,
|c 2010.
|
300 |
# |
# |
|b online resource.
|
336 |
# |
# |
|a text
|b txt
|2 rdacontent
|
337 |
# |
# |
|a computer
|b c
|2 rdamedia
|
338 |
# |
# |
|a online resource
|b cr
|2 rdacarrier
|
347 |
# |
# |
|a text file
|b PDF
|2 rda
|
505 |
0 |
# |
|a The hemodynamic signal and neural activity, or Diffusion Tensor Imaging -- Vision -- Somatosensory: Imaging Tactile Perception -- Auditory: Imaging Sound Maps -- Parietal: Imaging Gaze Direction -- Inferotemporal: Imaging Objects -- Inferotemporal: Imaging Faces -- Prefrontal: Imaging working memory -- Neural development and plasticity -- Optical imaging in intraoperative setting in humans -- Near Infrared Imaging in Human infants -- Optical imaging with voltage sensitive dyes -- Fast optical imaging based on scattered light -- 2 photon imaging of hemodynamic signals -- Optical Coherence Tomography.
|
520 |
# |
# |
|a The technology of detecting and interpreting patterns of reflected light has reached a remarkable degree of maturity that now permits high spatial and temporal resolution visualization at both the systems and cellular levels. There now exist several optical imaging methodologies, based on either hemodynamic changes in nervous tissue or neurally-induced light scattering changes, that can be used to measure ongoing activity in the brain. Imaging the Brain with Optical Methods presents the history of optical imaging and its use in the study of brain function, and the rapidly developing optical technologies and their applications that have recently developed. These include intrinsic signal optical imaging, near-infrared optical imaging, fast optical imaging based on scattered light, optical imaging with voltage sensitive dyes, and 2 photon imaging of hemodynamic signals. In total, this volume captures a profile of the current state of optical imaging methodologies and their contribution towards understanding the spatial and temporal organization of cerebral cortical function. Imaging the Brain with Optical Methods will be highly valuable for researchers and clinicians interested in brain imaging methods and brain function, including advanced undergraduates, and doctoral students, neuroscientists, physicists, psychologists, bioengineers, neurologists, psychiatrists, and neurosurgeons. About the author: Dr. Anna W. Roe is a professor of psychology and radiology at Vanderbilt University. She has developed optical methods for studying brain function and specializes in how our brain builds real vs. illusory percepts of the world.
|
650 |
# |
0 |
|a Medicine.
|
650 |
# |
0 |
|a Neurosciences.
|
650 |
# |
0 |
|a Neurology.
|
650 |
# |
0 |
|a Nanotechnology.
|
650 |
1 |
4 |
|a Biomedicine.
|
650 |
2 |
4 |
|a Neurosciences.
|
650 |
2 |
4 |
|a Nanotechnology.
|
650 |
2 |
4 |
|a Neurology.
|
710 |
2 |
# |
|a SpringerLink (Online service)
|
773 |
0 |
# |
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9781441904515
|
856 |
4 |
0 |
|u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4419-0452-2
|
912 |
# |
# |
|a ZDB-2-SBL
|
950 |
# |
# |
|a Biomedical and Life Sciences (Springer-11642)
|