Geometry and Spectra of Compact Riemann Surfaces

This classic monograph is a self-contained introduction to the geometry of Riemann surfaces of constant curvature <U+0013>1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of t...

Full description

Bibliographic Details
Main Author: Buser, Peter. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston : Birkhũser Boston, 2010.
Series:Modern Birkhũser Classics
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4992-0
LEADER 04239nam a22004815i 4500
001 8455
003 DE-He213
005 20130725202546.0
007 cr nn 008mamaa
008 110222s2010 xxu| s |||| 0|eng d
020 # # |a 9780817649920  |9 978-0-8176-4992-0 
024 7 # |a 10.1007/978-0-8176-4992-0  |2 doi 
050 # 4 |a QA331.7 
072 # 7 |a PBKD  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.94  |2 23 
100 1 # |a Buser, Peter.  |e author. 
245 1 0 |a Geometry and Spectra of Compact Riemann Surfaces  |c by Peter Buser.  |h [electronic resource] / 
264 # 1 |a Boston :  |b Birkhũser Boston,  |c 2010. 
300 # # |a XVIII, 474p. 145 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Modern Birkhũser Classics 
505 0 # |a Preface.-Chapter 1: Hyperbolic Structures.-Chapter 2: Trigonometry -- Chapter 3: Y-Pieces and Twist Parameters -- Chapter 4:The Collar Theorem -- Chapter 5: Bers<U+0019> Constant and the Hairy Torus -- Chapter 6: The Teichm<U+00fc>ller Space -- Chapter 7: The Spectrum of the Laplacian -- Chapter 8: Small Eigenvalues -- Chapter 9: Closed Geodesics and Huber<U+0019>s Theorem -- Chapter 10: Wolpert<U+0019>s Theorem -- Chapter 11: Sunada<U+0019>s Theorem -- Chapter 12: Examples of Isospectral Riemann surfaces -- Chapter 13: The Size of Isospectral Families -- Chapter 14: Perturbations of the Laplacian in Hilbert Space.-Appendix: Curves and Isotopies.-Bibliography.-Index.-Glossary. 
520 # # |a This classic monograph is a self-contained introduction to the geometry of Riemann surfaces of constant curvature <U+0013>1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace operator with the geometry of such surfaces. The first part of the book is written in textbook form at the graduate level, with only minimal requisites in either differential geometry or complex Riemann surface theory. The second part of the book is a self-contained introduction to the spectrum of the Laplacian based on the heat equation. Later chapters deal with recent developments on isospectrality, Sunada<U+0019>s construction, a simplified proof of Wolpert<U+0019>s theorem, and an estimate of the number of pairwise isospectral non-isometric examples which depends only on genus. Researchers and graduate students interested in compact Riemann surfaces will find this book a useful reference. Anyone familiar with the author's hands-on approach to Riemann surfaces will be gratified by both the breadth and the depth of the topics considered here. The exposition is also extremely clear and thorough. Anyone not familiar with the author's approach is in for a real treat. <U+0014> Mathematical Reviews This is a thick and leisurely book which will repay repeated study with many pleasant hours <U+0013> both for the beginner and the expert. It is fortunately more or less self-contained, which makes it easy to read, and it leads one from essential mathematics to the <U+001c>state of the art in the theory of the Laplace<U+0013>Beltrami operator on compact Riemann surfaces. Although it is not encyclopedic, it is so rich in information and ideas & the reader will be grateful for what has been included in this very satisfying book. <U+0014>Bulletin of the AMS The book is very well written and quite accessible; there is an excellent bibliography at the end. <U+0014>Zentralblatt MATH 
650 # 0 |a Mathematics. 
650 # 0 |a Algebra. 
650 # 0 |a Geometry, algebraic. 
650 # 0 |a Differential equations, partial. 
650 1 4 |a Mathematics. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Algebra. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817649913 
830 # 0 |a Modern Birkhũser Classics 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4992-0 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)