Spinors in Four-Dimensional Spaces

Without using the customary Clifford algebras frequently studied in connection with the representations of orthogonal groups, this book gives an elementary introduction to the two-component spinor formalism for four-dimensional spaces with any signature. Some of the useful applications of four-dimen...

Full description

Bibliographic Details
Main Author: Torres del Castillo, Gerardo F. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston, MA : Birkhũser Boston : Imprint: Birkhũser, 2010.
Edition:1.
Series:Progress in Mathematical Physics ; 59
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4984-5
LEADER 05037nam a22005295i 4500
001 8453
003 DE-He213
005 20130725201019.0
007 cr nn 008mamaa
008 100721s2010 xxu| s |||| 0|eng d
020 # # |a 9780817649845  |9 978-0-8176-4984-5 
024 7 # |a 10.1007/978-0-8176-4984-5  |2 doi 
050 # 4 |a QA252.3 
050 # 4 |a QA387 
072 # 7 |a PBG  |2 bicssc 
072 # 7 |a MAT014000  |2 bisacsh 
072 # 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 # |a Torres del Castillo, Gerardo F.  |e author. 
245 1 0 |a Spinors in Four-Dimensional Spaces  |c by Gerardo F. Torres del Castillo.  |h [electronic resource] / 
250 # # |a 1. 
264 # 1 |a Boston, MA :  |b Birkhũser Boston :  |b Imprint: Birkhũser,  |c 2010. 
300 # # |a VIII, 177p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Progress in Mathematical Physics ;  |v 59 
505 0 # |a 1 Spinor Algebra.-1.1 Orthogonal Groups.-1.2 Null Tetrads and the Spinor Equivalent of a Tensor.-1.3 Spinorial Representation of the Orthogonal Transformations.-1.3.1 Euclidean Signature.-1.3.2 Lorentzian Signature.-1.3.3 Ultrahyperbolic Signature.-1.4 Reflections.-1.5 Clifford Algebra. Dirac Spinors.-1.6 Inner Products. Mate of a Spinor.-1.7 Principal Spinors. Algebraic Classification.-Exercises.-2 Connection and Curvature.-2.1 Covariant Differentiation -- 2.2 Curvature.-2.2.1 Curvature Spinors.-2.2.2 Algebraic Classification of the Conformal Curvature.-2.3 Conformal Rescalings.-2.4 Killing Vectors. Lie Derivative of Spinors.-Exercises -- 3 Applications to General Relativity.-3.1 Maxwell<U+0019>s Equations.-3.2 Dirac<U+0019>s Equation .-3.3 Einstein<U+0019>s Equations.-3.3.1 The Goldberg<U+0013>Sachs Theorem.-3.3.2 Space-Times with Symmetries. Ernst Potentials.-3.4 Killing Spinors.-Exercises.-4 Further Applications.-4.1 Self-Dual Yang<U+0013>Mills Fields.-4.2 H and H H Spaces.-4.3 Killing Bispinors. The Dirac Operator.-Exercises.-A Bases Induced by Coordinate Systems.-References. 
520 # # |a Without using the customary Clifford algebras frequently studied in connection with the representations of orthogonal groups, this book gives an elementary introduction to the two-component spinor formalism for four-dimensional spaces with any signature. Some of the useful applications of four-dimensional spinors, such as Yang<U+0013>Mills theory, are derived in detail using illustrative examples. Key topics and features: " Uniform treatment of the spinor formalism for four-dimensional spaces of any signature, not only the usual signature (+ + + <U+0012>) employed in relativity " Examples taken from Riemannian geometry and special or general relativity are discussed in detail, emphasizing the usefulness of the two-component spinor formalism " Exercises in each chapter " The relationship of Clifford algebras and Dirac four-component spinors is established " Applications of the two-component formalism, focusing mainly on general relativity, are presented in the context of actual computations Spinors in Four-Dimensional Spaces is aimed at graduate students and researchers in mathematical and theoretical physics interested in the applications of the two-component spinor formalism in any four-dimensional vector space or Riemannian manifold with a definite or indefinite metric tensor. This systematic and self-contained book is suitable as a seminar text, a reference book, and a self-study guide. Reviews from the author's previous book, 3-D Spinors, Spin-Weighted Functions and their Applications: In summary&the book gathers much of what can be done with 3-D spinors in an easy-to-read, self-contained form designed for applications that will supplement many available spinor treatments. The book&should be appealing to graduate students and researchers in relativity and mathematical physics. <U+0014>Mathematical Reviews The present book provides an easy-to-read and unconventional presentation of the spinor formalism for three-dimensional spaces with a definite or indefinite metric...Following a nice and descriptive introduction&the final chapter contains some applications of the formalism to general relativity. <U+0014>Monatshefte f<U+00fc>r Mathematik 
650 # 0 |a Mathematics. 
650 # 0 |a Topological Groups. 
650 # 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Classical and Quantum Gravitation, Relativity Theory. 
650 2 4 |a Applications of Mathematics. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817649838 
830 # 0 |a Progress in Mathematical Physics ;  |v 59 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4984-5 
912 # # |a ZDB-2-PHA 
950 # # |a Physics and Astronomy (Springer-11651)