Representation Theory and Complex Geometry

This classic monograph provides an overview of modern advances in representation theory from a geometric standpoint. A geometrically-oriented treatment of the subject is very timely and has long been desired, especially since the discovery of D-modules in the early 1980s and the quiver approach to q...

Full description

Bibliographic Details
Main Authors: Chriss, Neil. (Author), Ginzburg, Victor. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston : Birkhũser Boston, 2010.
Edition:1st.
Series:Modern Birkhũser Classics
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4938-8
LEADER 03995nam a22005535i 4500
001 8444
003 DE-He213
005 20130725194433.0
007 cr nn 008mamaa
008 100715s2010 xxu| s |||| 0|eng d
020 # # |a 9780817649388  |9 978-0-8176-4938-8 
024 7 # |a 10.1007/978-0-8176-4938-8  |2 doi 
050 # 4 |a QA252.3 
050 # 4 |a QA387 
072 # 7 |a PBG  |2 bicssc 
072 # 7 |a MAT014000  |2 bisacsh 
072 # 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 # |a Chriss, Neil.  |e author. 
245 1 0 |a Representation Theory and Complex Geometry  |c by Neil Chriss, Victor Ginzburg.  |h [electronic resource] / 
250 # # |a 1st. 
264 # 1 |a Boston :  |b Birkhũser Boston,  |c 2010. 
300 # # |a X, 495p. 10 illus., 5 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Modern Birkhũser Classics 
505 0 # |a Preface -- Chapter 0. Introduction -- Chapter 1. Symplectic Geometry -- Chapter 2. Mosaic -- Chapter 3. Complex Semisimple Groups -- Chapter 4. Springer Theory -- Chapter 5. Equivariant K-Theory -- Chapter 6. Flag Varieties, K-Theory, and Harmonic Polynomials -- Chapter 7. Hecke Algebras and K-Theory -- Chapter 8. Representations of Convolution Algebras -- Bibliography. 
520 # # |a This classic monograph provides an overview of modern advances in representation theory from a geometric standpoint. A geometrically-oriented treatment of the subject is very timely and has long been desired, especially since the discovery of D-modules in the early 1980s and the quiver approach to quantum groups in the early 1990s. The techniques developed are quite general and can be successfully applied to other areas such as quantum groups, affine Lie groups, and quantum field theory. The first half of the book fills the gap between the standard knowledge of a beginner in Lie theory and the much wider background needed by the working mathematician. The book is largely self-contained. . . . There is a nice introduction to symplectic geometry and a charming exposition of equivariant K-theory. Both are enlivened by examples related to groups. . . . An attractive feature is the attempt to convey some informal 'wisdom' rather than only the precise definitions. As a number of results is due to the authors, one finds some of the original excitement. This is the only available introduction to geometric representation theory. . . it has already proved successful in introducing a new generation to the subject. --- Bulletin of the American Mathematical Society The authors have tried to help readers by adopting an informal and easily accessible style. . . . The book will provide a guide to those who wish to penetrate into subject-matter which, so far, was only accessible in difficult papers. . . . The book is quite suitable as a basis for an advanced course or a seminar, devoted to the material of one of the chapters of the book. --- Mededelingen van het Wiskundig Genootschap Represents an important and very interesting addition to the literature. --- Mathematical Reviews 
650 # 0 |a Mathematics. 
650 # 0 |a Geometry, algebraic. 
650 # 0 |a Topological Groups. 
650 # 0 |a Cell aggregation  |x Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
700 1 # |a Ginzburg, Victor.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817649371 
830 # 0 |a Modern Birkhũser Classics 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4938-8 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)