Cohomological and Geometric Approaches to Rationality Problems New Perspectives /

Rationality problems link algebra to geometry. The difficulties involved depend on the transcendence degree over the ground field, or geometrically, on the dimension of the variety. A major success in 19th century algebraic geometry was a complete solution of the rationality problem in dimensions on...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Bogomolov, Fedor. (Editor), Tschinkel, Yuri. (Editor)
Format: Electronic
Language:English
Published: Boston : Birkhũser Boston, 2010.
Edition:1.
Series:Progress in Mathematics ; 282
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4934-0
LEADER 03314nam a22005055i 4500
001 8443
003 DE-He213
005 20130725193553.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 # # |a 9780817649340  |9 978-0-8176-4934-0 
024 7 # |a 10.1007/978-0-8176-4934-0  |2 doi 
050 # 4 |a QA564-609 
072 # 7 |a PBMW  |2 bicssc 
072 # 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 # |a Bogomolov, Fedor.  |e editor. 
245 1 0 |a Cohomological and Geometric Approaches to Rationality Problems  |b New Perspectives /  |c edited by Fedor Bogomolov, Yuri Tschinkel.  |h [electronic resource] : 
250 # # |a 1. 
264 # 1 |a Boston :  |b Birkhũser Boston,  |c 2010. 
300 # # |a X, 314p. 47 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Progress in Mathematics ;  |v 282 
505 0 # |a Preface -- Unremified cohomology of finite groups of Lie type -- The rationality of the moduli space of curves of genus 3 after P. Katsylo -- The rationality of certain moduli spaces of curves of genus 3 -- On sextic double solids -- Moduli stacks of vector bundles on curves and the King--Schofield rationality proof -- Noether's problem for some p-groups -- Generalized homological mirror symmetry and rationality questions -- The Bogomolov multiplier of finite simple groups -- The rationality problem and birational rigidity. 
520 # # |a Rationality problems link algebra to geometry. The difficulties involved depend on the transcendence degree over the ground field, or geometrically, on the dimension of the variety. A major success in 19th century algebraic geometry was a complete solution of the rationality problem in dimensions one and two over algebraically closed ground fields of characteristic zero. These advances have led to many interdisciplinary applications of algebraic geometry. This comprehensive text consists of surveys and research papers by leading specialists in the field. Topics discussed include the rationality of quotient spaces, cohomological invariants of finite groups of Lie type, rationality of moduli spaces of curves, and rational points on algebraic varieties. This volume is intended for research mathematicians and graduate students interested in algebraic geometry, and specifically in rationality problems. I. Bauer C. Bh̲ning F. Bogomolov F. Catanese I. Cheltsov N. Hoffmann S.-J. Hu M.-C. Kang L. Katzarkov B. Kunyavskii A. Kuznetsov J. Park T. Petrov Yu. G. Prokhorov A.V. Pukhlikov Yu. Tschinkel 
650 # 0 |a Mathematics. 
650 # 0 |a Geometry, algebraic. 
650 # 0 |a Group theory. 
650 # 0 |a Topological Groups. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Group Theory and Generalizations. 
700 1 # |a Tschinkel, Yuri.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817649333 
830 # 0 |a Progress in Mathematics ;  |v 282 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4934-0 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)