Topics in Operator Semigroups
The theory of operator semigroups was essentially discovered in the early 1930s. Since then, the theory has developed into a rich and exciting area of functional analysis and has been applied to various mathematical topics such as Markov processes, the abstract Cauchy problem, evolution equations, a...
Main Author: | |
---|---|
Corporate Author: | |
Format: | Electronic |
Language: | English |
Published: |
Boston :
Birkhũser Boston,
2010.
|
Series: | Progress in Mathematics ;
281 |
Subjects: | |
Online Access: | https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4932-6 |
Table of Contents:
- Introduction
- Part I. General Theory. Basic theory. The semi-simplicity space. Analyticity. The semigroup as a function of its generator. Large parameter. Boundary values
- Part II. Generalizations. Pre-semigroups. The semi-simplicity space. Families of unbounded symmetric operators. Dependence on parameters
- Notes and References. Bibliography.