Introduction to Quantum Groups

The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. It is shown that these algebras have natural integral forms that can be specialized at roots of 1 and yield new objects, which include quantum versions of...

Full description

Bibliographic Details
Main Author: Lusztig, George. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston : Birkhũser Boston, 2010.
Series:Modern Birkhũser Classics
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4717-9
LEADER 04258nam a22005295i 4500
001 8428
003 DE-He213
005 20130725202529.0
007 cr nn 008mamaa
008 110222s2010 xxu| s |||| 0|eng d
020 # # |a 9780817647179  |9 978-0-8176-4717-9 
024 7 # |a 10.1007/978-0-8176-4717-9  |2 doi 
050 # 4 |a QA174-183 
072 # 7 |a PBG  |2 bicssc 
072 # 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 # |a Lusztig, George.  |e author. 
245 1 0 |a Introduction to Quantum Groups  |c by George Lusztig.  |h [electronic resource] / 
264 # 1 |a Boston :  |b Birkhũser Boston,  |c 2010. 
300 # # |a XIV, 346p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Modern Birkhũser Classics 
505 0 # |a Preface -- Part I: The Drinfeld-Jimbo Algebra U -- Part II: Geometric Realization of f -- Part III: Kashiwara<U+0019>s Operators and Applications -- Part IV: Canonical Basis of U -- Part V: Change of Rings -- Part VI: Braid Group Action -- Index of Notation -- Index of Terminology. 
520 # # |a The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. It is shown that these algebras have natural integral forms that can be specialized at roots of 1 and yield new objects, which include quantum versions of the semi-simple groups over fields of positive characteristic. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical bases having rather remarkable properties. This book contains an extensive treatment of the theory of canonical bases in the framework of perverse sheaves. The theory developed in the book includes the case of quantum affine enveloping algebras and, more generally, the quantum analogs of the Kac<U+0013>Moody Lie algebras. Introduction to Quantum Groups will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists, theoretical physicists, and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the work may also be used as a textbook. **************************************** There is no doubt that this volume is a very remarkable piece of work...Its appearance represents a landmark in the mathematical literature. <U+0014>Bulletin of the London Mathematical Society This book is an important contribution to the field and can be recommended especially to mathematicians working in the field. <U+0014>EMS Newsletter The present book gives a very efficient presentation of an important part of quantum group theory. It is a valuable contribution to the literature. <U+0014>Mededelingen van het Wiskundig Lusztig's book is very well written and seems to be flawless...Obviously, this will be the standard reference book for the material presented and anyone interested in the Drinfeld<U+0013>Jimbo algebras will have to study it very carefully. <U+0014>ZAA [T]his book is much more than an 'introduction to quantum groups.' It contains a wealth of material. In addition to the many important results (of which several are new<U+0013>at least in the generality presented here), there are plenty of useful calculations (commutator formulas, generalized quantum Serre relations, etc.). <U+0014>Zentralblatt MATH 
650 # 0 |a Mathematics. 
650 # 0 |a Algebra. 
650 # 0 |a Group theory. 
650 # 0 |a Topological Groups. 
650 # 0 |a Quantum theory. 
650 # 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Algebra. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817647162 
830 # 0 |a Modern Birkhũser Classics 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4717-9 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)