Representation Theory of Algebraic Groups and Quantum Groups

This volume contains invited articles by top-notch experts who focus on such topics as: modular representations of algebraic groups, representations of quantum groups and crystal bases, representations of affine Lie algebras, representations of affine Hecke algebras, modular or ordinary representati...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Gyoja, Akihiko. (Editor), Nakajima, Hiraku. (Editor), Shinoda, Ken-ichi. (Editor), Shoji, Toshiaki. (Editor), Tanisaki, Toshiyuki. (Editor)
Format: Electronic
Language:English
Published: Boston : Birkhũser Boston, 2010.
Edition:1.
Series:Progress in Mathematics ; 284
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4697-4
LEADER 02954nam a22006015i 4500
001 8426
003 DE-He213
005 20130725203001.0
007 cr nn 008mamaa
008 101125s2010 xxu| s |||| 0|eng d
020 # # |a 9780817646974  |9 978-0-8176-4697-4 
024 7 # |a 10.1007/978-0-8176-4697-4  |2 doi 
050 # 4 |a QA174-183 
072 # 7 |a PBG  |2 bicssc 
072 # 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 # |a Gyoja, Akihiko.  |e editor. 
245 1 0 |a Representation Theory of Algebraic Groups and Quantum Groups  |c edited by Akihiko Gyoja, Hiraku Nakajima, Ken-ichi Shinoda, Toshiaki Shoji, Toshiyuki Tanisaki.  |h [electronic resource] / 
250 # # |a 1. 
264 # 1 |a Boston :  |b Birkhũser Boston,  |c 2010. 
300 # # |a XIII, 348p. 10 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Progress in Mathematics ;  |v 284 
520 # # |a This volume contains invited articles by top-notch experts who focus on such topics as: modular representations of algebraic groups, representations of quantum groups and crystal bases, representations of affine Lie algebras, representations of affine Hecke algebras, modular or ordinary representations of finite reductive groups, and representations of complex reflection groups and associated Hecke algebras. Representation Theory of Algebraic Groups and Quantum Groups is intended for graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics. Contributors: H. H. Andersen, S. Ariki, C. Bonnaf,̌ J. Chuang, J. Du, M. Finkelberg, Q. Fu, M. Geck, V. Ginzburg, A. Hida, L. Iancu, N. Jacon, T. Lam, G.I. Lehrer, G. Lusztig, H. Miyachi, S. Naito, H. Nakajima, T. Nakashima, D. Sagaki, Y. Saito, M. Shiota, J. Xiao, F. Xu, R. B. Zhang 
650 # 0 |a Mathematics. 
650 # 0 |a Geometry, algebraic. 
650 # 0 |a Group theory. 
650 # 0 |a Algebra. 
650 # 0 |a Topological Groups. 
650 # 0 |a Number theory. 
650 # 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Non-associative Rings and Algebras. 
650 2 4 |a Number Theory. 
650 2 4 |a Mathematical Methods in Physics. 
700 1 # |a Nakajima, Hiraku.  |e editor. 
700 1 # |a Shinoda, Ken-ichi.  |e editor. 
700 1 # |a Shoji, Toshiaki.  |e editor. 
700 1 # |a Tanisaki, Toshiyuki.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817646967 
830 # 0 |a Progress in Mathematics ;  |v 284 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4697-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)