Distributions Theory and Applications /

This textbook is an application-oriented introduction to the theory of distributions, a powerful tool used in mathematical analysis. The treatment emphasizes applications that relate distributions to linear partial differential equations and Fourier analysis problems found in mechanics, optics, quan...

Full description

Bibliographic Details
Main Authors: Duistermaat, J.J. (Author), Kolk, J.A.C. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston : Birkhũser Boston, 2010.
Edition:1.
Series:Cornerstones
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4675-2
LEADER 04147nam a22005295i 4500
001 8425
003 DE-He213
005 20130725201300.0
007 cr nn 008mamaa
008 100806s2010 xxu| s |||| 0|eng d
020 # # |a 9780817646752  |9 978-0-8176-4675-2 
024 7 # |a 10.1007/978-0-8176-4675-2  |2 doi 
050 # 4 |a QA401-425 
072 # 7 |a PBKJ  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 511.4  |2 23 
100 1 # |a Duistermaat, J.J.  |e author. 
245 1 0 |a Distributions  |b Theory and Applications /  |c by J.J. Duistermaat, J.A.C. Kolk.  |h [electronic resource] : 
250 # # |a 1. 
264 # 1 |a Boston :  |b Birkhũser Boston,  |c 2010. 
300 # # |a XVI, 445p. 41 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Cornerstones 
505 0 # |a Preface -- Motivation -- Test Functions -- Distributions -- Differentiation of Distributions -- Convergence of Distributions -- Taylor Expansion in Several Variables -- Localization -- Distributions with Compact Support -- Multiplication by Functions -- Transposition, Pullback and Push forward -- Convolution of Distributions -- Fundamental Solutions -- Fractional Integration and Differentiation -- Fourier Transformation -- Fourier Series -- Fundamental Solutions and Fourier Transformation -- Supports and Fourier Transformation -- Sobolev Spaces -- Appendix: Results from Measure Theory in the Context of Distributions -- Examination Exercises with Solutions -- Solutions to Selected Exercises -- References -- Index. 
520 # # |a This textbook is an application-oriented introduction to the theory of distributions, a powerful tool used in mathematical analysis. The treatment emphasizes applications that relate distributions to linear partial differential equations and Fourier analysis problems found in mechanics, optics, quantum mechanics, quantum field theory, and signal analysis. Throughout the book, methods are developed to deal with formal calculations involving functions, series, and integrals that cannot be mathematically justified within the classical framework. Key features: " Many examples, exercises, hints, and solutions guide the reader throughout the text. " Includes an introduction to distributions, differentiation, convergence, convolution, the Fourier transform, and spaces of distributions having special properties. " Original proofs, which may be difficult to locate elsewhere, are given for many well-known results. " The Fourier transform is transparently treated and applied to provide a new proof of the Kernel Theorem, which in turn is used to efficiently derive numerous important results. " The systematic use of pullback and pushforward introduces concise notation. " Emphasizes the role of symmetry in obtaining short arguments and investigates distributions that are invariant under the actions of various groups of transformations. Distributions: Theory and Applications is aimed at advanced undergraduates and graduate students in mathematics, theoretical physics, and engineering, who will find this textbook a welcome introduction to the subject, requiring only a minimal mathematical background. The work may also serve as an excellent self-study guide for researchers who use distributions in various fields. 
650 # 0 |a Mathematics. 
650 # 0 |a Fourier analysis. 
650 # 0 |a Differential Equations. 
650 # 0 |a Differential equations, partial. 
650 1 4 |a Mathematics. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Ordinary Differential Equations. 
700 1 # |a Kolk, J.A.C.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817646721 
830 # 0 |a Cornerstones 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4675-2 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)